
DEF CON 27
Capture the Flag Finals

Shortman

The CTF
Live Attack/Defense CTF

16 Teams from all over the world

Must qualify by either winning a qualifier or finishing in the top X in the Defcon
qualifier CTF

Pre-qualified Teams

DEF CON 2018 CTF - 12 August 2018 - prequalified: DEFKOR00T

HITCON CTF 2018 - 21 October 2018 - prequalified: Dragon Sector

RuCTFE 2018 - 10 November 2018 - prequalified: saarsec

C3CTF 2018 - 27 December 2018 - prequalified: mhackeroni

PlaidCTF 2019 - 12 April 2019 - prequalified: HITCON

https://www.oooverflow.io/dc-ctf-2018-finals/
https://ctftime.org/event/669
https://ctftime.org/event/687
https://ctftime.org/event/718
https://ctftime.org/event/743

Defcon Qualifiers

Thursday (Day -1)
We get an information “leak” from the Order of the Overflow, that instructed us to
bring the following tools:

- Microsoft Windows + Visual Studio
- MacOS + XCode + iOS SDK
- Any GNU/Linux distribution with proper toolchain + Android SDK
- FreeBSD (comes with toolchain)

- An extra monitor that supports HDMI...

Thursday (Day -1)

Arrived at 12:30am after delayed flight from JFK to Planet Hollywood

Friday (Day 1)
Game started at 10am (after ~5 hours of sleep)

First challenges released:

- TelOoOgram: iOS messaging app similar to telegram (Objective C)
- AoOoL: Webserver, written in ??
- ROPShip: King of the Hill challenge

Hackers Don’t Use Macs….
But I actually brought my UCSB Macbook Pro

Hello TeloOogram!

TeloOogram
- First bug identified

- Unused “VoIP” server with a trivial buffer overflow
- Appeared to be unexploitable
- Easily patched (patch deployed)

TeloOogram
- Second bug identified

- The app requests avatar.png from contacts
- Let’s try requesting other files…
- Success. Stole other teams creds.txt (username/password)
- Oh yeah, and their flags
- Easily patched (patch deployed)

- Saarsec getting more flags that us, but not exploiting us…
- Hours pass…
- Turns out other teams aren’t great at patching

- Try ./flag instead of flag

TeloOogram
- Third bug identified

- Objective C parser used that was deprecated for security reasons
- This is a nasty one…
- Goes unexploited by any team, despite our best efforts
-

TeloOogram
- Removed from the game at the end of Day 1

- We rejoice

AoOol
Some webserver written in C/C++

- Responds to GET, UPLOAD, and CONFIG commands

Looks like there are some funky bits with parsing of a config file

I start getting spun up… then fall asleep.

Saturday (Day 2)
Game starts at 10am (again)

- Actually a little bit late, but that’s normal
- I start working on AoOol again, until...

n

n

DoOom on an original XBOX

DoOom on an original XBOX

First, The Good
The XBOX had been modded to download a .xbe file over the network

It was downloading a version of Chocolate Doom

Multiplayer game against other teams!

Scoring:

- Find OOO tiles and stand on them (1 point per second)

The hard stuff
We are told that the XBOX must be “pingable” (turns out to be a lie…)

The original .xbe has shooting disable and username “sheeple”

You can only score with the username of your team id

E.g., [14]shellphish

Let the pwning begin!

Let the pwning begin!

Let the pwning begin!
Shooting enabled, points being scored… but… there’s more..

WE FIND A HIDDEN ROOM THAT IS COVERED IN OOO TILES

The catch: you need to clip through walls to get there

Becoming a God
We patch the binary to enable no clipping

IT WORKS!

We freak!

Becoming a God
No points are being scored…

- Actually we can’t tell if points are being scored

OOO tells us everything is fine

We fight for hours..

We don’t know if it’s working, or if we are scoring,

but we are Gods.

We were DoOomed

We were DoOomed
We needed to send our commands to the server as well, not just locally patch…

Also, the XBOX didn’t need to be pingable…

Lack of feedback killed us.

We complained to the organizers, they promised to fix it next year.

End of Friday
Finally, some rest…

What are the other challenges?

The Bitflip Conjecture
===

Definition:

 A snippet of assembly code is `N-Flip Resistant` if its output remains

 constant (i.e., it produces the same output and exits with the same

 return value) even if ANY combination of N bits are flipped.

One-flip Conjecture:

 The x86 architecture is such that it is possible to write any arbitrary

 program (of any length) in a way that is 1-flip resistant.

 - Balzaroth (Vegas 2019)

The Bitflip Conjecture
Points are assigned based on how close you are from a complete proof

(i.e., based on how many bit flip your code was able to withstand)

But first, how do you want the registers initialized before executing the code?

 1. I like all my registers set to zero

 2. I want them pointing to the middle of a 64KB R/W region of memory)

 3. Dont bother. Leave them as they are

The Bitflip Conjecture

We are allotted 200 bytes of shellcode

This happens to be closely related to my research here…

Game on!

The Bitflip Conjecture
Actually, the CTF is paused so we can’t score

But we can still get our shellcode ready for morning

The Bitflip Conjecture: Idea 1
Replicate shellcode, and do a checksum

 BITS 64

_start:
 lea rax, [rel copy2]
 lea rbx, [rax-(copy2 - copy1)]
loop_start:
 dec al
 add cl, byte [rax] ; add cl, [rax]
 cmp eax, ebx
 jnz loop_start

decide:
 cmp cl, 34
 jnz copy2

copy1:
 db SHELLCODE

copy2:
 db SHELLCODE

The Bitflip Conjecture: Idea 1
Replicate shellcode, and do a checksum

 [--xxxxxx] [xxxxxxxx] [xxxxxxxx] [--------] [------xx] [xxxxxxxx] [xxxxxxxx] [---xxxxx]
 [-------x] [x-xxxxxx] [xxxxxxx-] [xxxx-xxx] [---xx-xx] [-xxx---x] [------x-] [-xxx-x-x]
 [--x-xxx-] [--x-xxx-] [------xx] [-----x-x] [--xxxxxx] [--------] [--------] [--------]
 [--------] [--------] [--------] [--------] [--------] [--------] [--------] [--------]
 [--------] [--------] [--------] [--------] [--------] [--------] [--------] [--------]
 [--------] [--------] [--------] [--------] [--------] [--------] [--------] [--------]
 [--------] [--------] [--------] [--------] [--------] [--------] [--------] [--------]
 [--------] [--------] [--------] [--------] [--------] [--------] [--------] [--------]
 [--------] [--------] [--------] [--------] [--------] [--------] [--------] [--------]
 [--------] [--------] [--------] [--------] [--------] [--------] [--------] [--------]
 [--------] [--------] [--------] [--------] [--------] [--------] [--------] [--------]
 [--------] [--------] [--------] [--------] [--------] [--------] [--------] [--------]
 [--------] [--------] [--------] [--------] [--------] [--------] [--------] [--------]
 [--------] [--------] [--------] [--------] [--------] [--------] [--------] [--------]
 [--------] [--------] [--------] [--------] [xxxxxxxx] [--------] [--------] [--------]
 [--------] [--------] [--------] [--------] [--------] [--------] [--------] [--------]
 [--------] [--------] [--------] [--------] [--------] [--------] [--------] [--------]
 [--------] [--------] [--------] [--------] [--------] [--------] [--------] [--------]
 [--------] [--------] [--------] [--------] [--------] [--------] [--------] [--------]
 [--------] [--------] [--------] [--------] [--------] [--------] [--------] [--------]
 [--------] [--------] [--------] [--------] [--------]

The Bitflip Conjecture: Idea 2
Transactional Memory!

If the transaction fails, it will reset everything

PROBLEM 1: The xbegin instruction will always fail bitflips

PROBLEM 2: We need to flush the instruction cache… cpuid fails too

Still… Pretty good (~12 bits)

The Bitflip Conjecture: Idea 3
What if we just fix the flipped bit…?

RAX = ptr to shellcode

RCX = offset to byte that was flipped

The bit that was flipped is on the stack somewhere

The Bitflip Conjecture: Idea 3 (Improved)
Check offset

Jump to uncorrupted portion of the code

Now only our check needs to survive bit flips...

CHECK

SHELLCODE 1

SHELLCODE 2

NOPS

NOPS

The Bitflip Conjecture: Idea 3 (Improved)
4 Bits!!!

BITS 64

_start:
 sbb cl, (0x22 + copy2)
 jbe $+0x67
post_jump:

copy1:
 db SHELLCODE

buf:
 times (64 - (buf - post_jump)) db 0x90

copy2:
 db SHELLCODE

Good, but not good enough
0 points scored

Good, but not good enough

nnnn!

Good, but not good enough

We can do better

n

Let’s just fuzz offsets

P!

1 Bit!!!

CHECK

SHELLCODE 1

STRING 2

NOPS

NOPS

STRING 1
NOPS

 BITS 64
_start:
 add al, cl
 jns $+0x60
copy1:
 NOPS
 SHELLCODE
 NOPS
 jmp copy1
the_string1:
 db "I am Invincible!"
buf:
 NOPS
Copy2:

 NOPS
 SHELLCODE
 STRING

1 Bit!!!
shellcode, and do a checksum

 [--------] [--------] [--------] [------x-] [--------] [--------] [--------] [--------]
 [--------] [--------] [--------] [--------] [--------] [--------] [--------] [--------]
 [--------] [--------] [--------] [--------] [--------] [--------] [--------] [--------]
 [--------] [--------] [--------] [--------] [--------] [--------] [--------] [--------]
 [--------] [--------] [--------] [--------] [--------] [--------] [--------] [--------]
 [--------] [--------] [--------] [--------] [--------] [--------] [--------] [--------]
 [--------] [--------] [--------] [--------] [--------] [--------] [--------] [--------]
 [--------] [--------] [--------] [--------] [--------] [--------] [--------] [--------]
 [--------] [--------] [--------] [--------] [--------] [--------] [--------] [--------]
 [--------] [--------] [--------] [--------] [--------] [--------] [--------] [--------]
 [--------] [--------] [--------] [--------] [--------] [--------] [--------] [--------]
 [--------] [--------] [--------] [--------] [--------] [--------] [--------] [--------]
 [--------] [--------] [--------] [--------] [--------] [--------] [--------] [--------]
 [--------] [--------] [--------] [--------] [--------] [--------] [--------] [--------]
 [--------] [--------] [--------] [--------] [--------] [--------] [--------] [--------]
 [--------] [--------] [--------] [--------] [--------] [--------] [--------] [--------]
 [--------] [--------] [--------] [--------] [--------] [--------] [--------] [--------]
 [--------] [--------] [--------] [--------] [--------] [--------] [--------] [--------]
 [--------] [--------] [--------] [--------] [--------] [--------] [--------] [--------]
 [--------] [--------] [--------] [--------] [--------] [--------] [--------] [--------]
 [--------] [--------] [--------] [--------] [--------] [--------] [--------] [--------]
 [--------] [--------] [--------] [--------] [--------] [--------] [--------] [--------]
 [--------] [--------] [--------] [--------] [--------] [--------] [--------] [--------]
 [--------] [--------] [--------] [--------] [--------] [--------]

How to get 0

US Tea Deliverers

Final Scores

10th Place!

