TRUST.IO: Protecting Physical Interfaces on
Cyber-physical Systems

Chad Spensky*, Aravind Machiry*, Marcel Buschf, Kevin Leach*, Rick Housley§,
Christopher Kruegel®, and Giovanni Vigna*
*UC Santa Barbara TUniversiz‘y of Erlangen-Niirnberg iUniversity of Michigan 8 United Technologies
*{cspensky,machiry,chris,vigna} @cs.ucsb.edu Ymarcel.busch@cs.fau.de 3:kjleach@umich.edu §rick.housley@utc.com

Abstract—Cyber-physical systems (CPSes) have been replacing
their mechanical counterparts in many safety- and security-
critical applications (e.g., door locks, automobiles, and critical
infrastructure). However, this paradigm shift has introduced a
new software-based attack vector into these historically isolated
systems. Since many of these devices are networked, their physical
interfaces are vulnerable to both remote and local attackers.

In this work, we present TRUST.IO, a framework that auto-
matically, and transparently, hardens these physical interfaces
against all software-based exploits. More precisely, TRUST.IO
ensures that the software on the device cannot access any
protected general purpose input/output (GPIO) interfaces unless
the command was initiated from a trusted external client (e.g.,
a key, phone, or centralized server). TRUST.IO exploits the fact
that users rarely interact directly with these embedded devices.
Instead, users interact with a remote system (e.g., a car key,
smart hub, or control system) that ultimately issues commands to
the single-purpose embedded device. Thus, TRUST.IO leverages
modern embedded processor features to ensure that these critical
physical interactions (e.g., actuating motors or reading sensors)
will be performed if and only if the command was issued by an
authorized external device that can satisfy a cryptographic chal-
lenge. We demonstrate that TRUST.IO can be easily applied to
existing CPSes, both bare-metal and Linux-based, with minimal
runtime overhead and minimal code modifications.

Index Terms—trusted execution environment, cyber physical
systems, hardware security

I. INTRODUCTION

The use of cyber-physical systems (CPSes) is becoming
commonplace for many day-to-day tasks (e.g., autonomous
vehicles, smart homes, robotic assistants, and sensor net-
works). Moreover, modern infrastructure [1], safety-critical
systems [2], and even baby monitors [3] increasingly rely
on CPSes for their operation. Unfortunately, the ubiquity of
CPSes has brought forth a wealth of new security and privacy
issues. As our society develops an increasing dependence on
CPSes, there is a critical need to address the growing security
threats in this area.

In particular, vulnerabilities that emerge from the physical
nature of CPSes can pose substantial risks to life and property.
CPS deployments invariably interact with the physical envi-
ronment by either sensing or actuating. Thus, compromising a
CPS device threatens more than data—for example, an attacker
who gains control of the physical actuator to an insulin pump
could spell disaster for a diabetic user [4]. Indeed, these attacks
are no longer theoretical, as numerous real-world attacks

have been demonstrated against industrial programmable logic
controllers (PLCs) [5], [6], smart home components [7]-[9],
and even medical devices [4], [10], [11]. A recent report
by Symantec even indicates that most of the United States’
power grid was recently infiltrated by a cyber attack that was
capable of inducing widespread blackouts [12]. Unfortunately,
this trend of exploiting physical interfaces appears to be rising
as our physical world becomes increasingly digitized.

The security of these systems ultimately hinges on the abil-
ity to ensure that only intended commands are ever actualized
by the physical interfaces. Yet, most CPSes lack a method for
verifying the origin of a command, which enables attackers
to maliciously control these devices by injecting commands
remotely (e.g., breaking Zigbee encryption [13]), sending
commands locally (e.g., using backdoor credentials [3]), or
even compromising the software on the device to actuate the
physical interface directly from the memory-mapped region
of the peripheral in the system’s memory (e.g., a buffer over-
flow [14]). Moreover, some of these commands will always
originate from a remote device (e.g., an Internet-connected
camera will always be actuated by a remote device), which
means that locally running code should, in fact, never be
allowed to actuate the physical interface directly. Indeed, much
of the functionality of these devices, and the logic that controls
them, is on a separate device all together, which we call
the Client Device. However, the CPS that will eventually
perform the requested action currently has no systematic way
of verifying the source of the commands that it receives.

To address this growing concern for the security of CPSes,
we present TRUST.IO, a system that protects physical inter-
faces by creating a trusted path between the Client Device
that issued the command and the CPS that will ultimately
act on it. TRUST.IO ensures that only intended commands are
executed, even when the communication, underlying operating
system (OS), and applications on the CPS have all been
completely compromised. It achieves this by leveraging a
trusted execution environment (TEE), which are ubiquitous
among modern embedded central processing units (CPUs).

TRUST.IO serves as a gatekeeper to these physical in-
terfaces, and any attempt to access these peripherals from
the “non-secure world” will automatically and transparently,
execute verification code. This verification code will permit the
access (i.e., communicating with a peripheral) if and only if a

cryptographic challenge has been satisfied by a trusted remote
Client Device (e.g., a smart phone that has been paired with
the CPS), failing silently otherwise. TRUST.IO also provides
the ability to cryptographically verify values that are read from
the CPS’s sensors, thwarting any attempt to maliciously spoof
sensor values to either mask an attack or trigger false alarms.
The user experience can remain unmodified (i.e., requiring
no more interaction than the unprotected interaction), as the
verification can be performed automatically. Indeed, if a TEE
is available on the Client Device as well, this interaction can
also be hardened against malicious software.

TRUST.IO is designed to augment existing firmware with
minimal modifications, in most cases requiring only the im-
plementation of one callback function and the insertion of
one function into the system initialization source code of the
firmware. Because TRUST.IO is implemented within the se-
cure world (i.e., inside the TEE), the normal world code is able
to operate as it did before the addition of TRUST.IO, without
any annotations or source code modification for protected
memory regions. We also demonstrate the ability to deploy
TRUST.IO on Linux-based firmware, providing system-level
protection to every application that interacts with any protected
peripherals. The implementation of TRUST.IO is completely
invisible to the existing applications running on the device, and
is compatible with all of the other software-based defenses that
have been proposed to harden CPSes. Because TRUST.IO can
re-use the same communication channel that is already being
used by the CPSes and Client Device for communication, it
requires minimal modification to the Client Device as well,
leaving the user experience unaltered.

In summary, we claim the following contributions:

« a framework for transparently protecting general purpose
input/output (GPIO) interfaces on cyber-physical systems,
even in the face of complete software compromise (e.g.,
the OS and applications);

e a tool for automatically implement these system-wide
protections, while requiring no source code annotations;

o a novel scheme for re-using existing communication
channels for a Client Device to verify accesses to a CPS;

« a flexible architecture for securing peripheral input/output
(I/O) on TEE-enabled platforms;

e an open-source prototype implementation of our system
on a representative embedded ARM platform (https://
github.com/ucsb-seclab/trust.io).

II. BACKGROUND AND MOTIVATION

Currently, there are no existing methods for ensuring the
security of the physical interfaces of CPSes, aside from
standard software-security measures. Many proposed defenses
aim to protect embedded devices by performing attestation on
their software state (e.g., remote attestation [15] with hardware
extensions on the MSP430 processor [16], large-scale swarm
attestation [17], and remote control flow attestation [18]).
Meanwhile, others have targeted PLCs, employing physics-
based intrusion detection mechanisms to attempt to detect
stealthy physical interface attacks [19] (e.g., Stuxnet [6]). Yet,

none of these solutions are capable of protecting our systems
against a runtime, software-based attack.

TEEs have existed for some time, and have continuously
evolved; previous examples include Flicker [20], Intel’s sys-
tem management mode (SMM) and recent software guard
extensions (SGX). In fact, ARM’s TrustZone, which is able to
segregate software on the system into secure and non-secure
worlds, is now being included in all of their embedded pro-
cessors. TRUST.IO exploits the proliferation of these TEEs to
provide a practical, easily deployed defense against software-
based attacks against physical interfaces.

In our ARM-based prototype, TRUST.IO leverages the
multiple worlds provided by TrustZone and the TrustZone-
aware advanced extensible interface (AXI) bus to provide a
trusted path between a remote party on a Client Device and the
physical interfaces on a critical CPS. These hardware-enforced
permissions alleviate the need for attestation of the software,
and greatly dampen the potential impact of a software-based
vulnerability on the CPS if the system defenses were to fail.

III. THREAT MODEL

Client Device

Embedded System
ARAAA

Firmware

&

GPIO
[VAVAUAVAV)
Fig. 1: TRUST.IO threat model, which demonstrates that the
GPIO interfaces will remain protected even if an attacker has
full control over the communication and the firmware

Rich OS

Secure OS

The goal of TRUST.IO is to mitigate the potential damage
caused by a software-based attack against a CPS. TRUST.IO
ensures that any malicious software running locally on the CPS
cannot manipulate the physical GPIO interfaces. This scenario
can arise in numerous scenarios, for example: 1) an attacker
could use a remote exploit to execute their code on the CPS,
2) an attacker could use a stolen credential to connect to the
CPS and issue erroneous commands, or 3) the code on the
CPS could have a malicious backdoor to permit unauthorized
access. In all of these instances, TRUST.IO can ensure that the
GPIO interfaces remain inaccessible, even if the attacker has
complete control of the firmware on the CPS. This attacker
model can be seen visually in Figure 1.

If the Client Device is also equipped with a TEE,
TRUST.IO’s implementation on the Client Device could be
moved into the TEE to defend against a compromised OS on
the Client Device as well (e.g., VButton [21]).

While TRUST.IO can ensure that no unintended physical
operations occur, it cannot prevent denial of service (DoS)
attacks against the CPS or a reuse of its computational
resources (e.g., the Mirai botnet [22]).

Cyber-Physical System

Non-secure World

Unmodified Device Firmware

-

if (cmd == “on") {
// Turn on the lights (GPIO)

Client Device *addr (0x41200000) = value (OXFFFFFF);
00100608: str 1, [r0] ; PROTECTED

}

Camera Trust.IO Callback

1
'

1

(V) |
1

int trust_io_callback(crypto_challenge) { H

// Hijack the receive callback temporarily |

° // This receives crypto_response H
tep_recv(tpeb_global, crypto_callback); !

'

// Send out Trust.lO challenge :
tep_write(socket_global, crypto_challenge); 1

// Read Trust.lO response

]
— @

return crypto_response;

N

; 7. Call normal-world callback
LDR r4, =#CRYPTO_CALL 9"
MOVS pc, r4
1 ; 8. Check cryptographic responsée
' BL check_response
tcp_recv(tpcb_global, recv_callback); ' ; 9. Perform action
' TST r1, #FSR_WRITE
\”My‘i BNE write_reg

: ; 10. Return to program execution
SUBS po, Ir, #4

Secure World
Monitor Vector Table
nop ; Reset
nop ;Undefined
b +576 ; SMC Handler
b +12 ; Prefetch Handler
b +20 ;Data Abort Handler
nop ;Reserved
b+4 ;IRQ Handler
b+4 ;FIQHandler
LSRr3, #12

Protection Array(4
; 5. Check if access is protected

protect_array[] = {0x41200000}; BL handle_data_abort
; 6.

;6. cry
BL get_crypto_challenge

Trust.lO

|.; 1. Save Registers \
STMFD sp!, {r0-r12, Ir}
; 2. Toggle NS Bit (Secure World)
MCR p15,0,r0,c1,¢1,0
; 3. Read Fault Address (0x41200000)
MRC p15, 0, r0, ¢5, c0, 0
; 4. Disassemble register
LDR r3, [Ir, #-8]
AND r3, #0xf000

Fig. 2: Using TRUST.IO to protect a GPIO write operation on an embedded system that is actuated by a smartphone (i.e.,

enable recording on an Internet Protocol (IP) camera)

IV. SYSTEM DESIGN

With the increasing prevalence of applications for CPSes,
it is neither cost effective nor strategic for companies to
postpone the release of a new product, or new feature, to
implement stronger security features (i.e., willfully ignoring
security to release a product on time). TRUST.IO was designed
with these practical commercial needs in mind. TRUST.IO
removes the burden of implementing security features from the
development phase of these CPS devices, as critical peripheral
accesses are protected automatically, and system-wide.

TRUST.IO observes every access to any peripheral on
the system and intelligently permits or rejects each access.
TRUST.IO works by conceptually “hooking” accesses to sen-
sitive memory regions on the CPS device it is designed to
protect. When a Client Device issues a request to the CPS,
TRUST.IO intercepts this resulting I/O on the CPS and issues
a cryptographic challenge to the Client Device. This challenge,
described in detail in Section IV-D, is constructed in such a
way that the Client Device can both (1) verify that the CPS
will perform the proper action and (2) respond to the challenge
so that the CPS can authorize and execute the original access.

TRUST.IO works in the following way (Figure 2):

1) The Client Device sends a command to the unmodified,
untrusted firmware in the non-secure world, which per-
forms the requested actions (i.e., @).

2) The untrusted firmware then attempts to access the pro-
tected peripheral, thereby triggering a security exception,
which occurs in response to a peripheral access. This
exception is then handled by TRUST.IO in the secure
world (i.e., (2)-(3)) (Section IV-B2).

3) TRUST.IO then checks its security permissions and, if
required, creates a cryptographic challenge that is then
sent back to the Client Device, completely unbeknownst
to the untrusted firmware (i.e., (4)<(7)) (Section IV-D).

4) If the Client Device successfully completes the
challenge-response, TRUST.IO transparently performs
the requested protected operation and returns control
back to the untrusted firmware. Otherwise, it fails

silently (i.e., (3)-(10)) (Section IV-E).

A. Architecture

TRUST.IO was designed to meet the following criteria:

« minimal code modifications to ensure easy adoption and
minimize the possibility of programming errors,

o minimal additional code in the compiled binary, since
many CPSes have strict space constraints, and

« the ability to reuse the existing communication infrastruc-
ture to interact with the Client Device.

Currently, TRUST.IO uses TrustZone and its hardware
extensions, which enable peripheral memory regions to be
assigned to specific worlds (i.e., secure or non-secure). How-
ever, our approach is applicable to any peripheral-aware TEE
implementation. We found that TrustZone, while sufficient,
was not as straightforward of a solution as one would expect.
Thus, we created a method for automatically and transparently
moving all of the existing, non-TrustZone-aware, code of
an embedded system into the non-secure world, while only
restricting access to the protected memory regions.

TRUST.IO’s TEE implementation differs from a typical
TEE implementation in a few key ways. First, TRUST.IO has
no kernel running in the secure world—this is contrary to
the model used by popular TEEs that implement a secure
monitor and depend on the non-secure world to explicitly
trigger a world switch. Second, TRUST.IO is never called or
interacted with directly by the non-secure world, instead it is
only instantiated when a protected memory region is accessed
(i.e., a data abort exception is triggered). In fact, our approach
is completely invisible to the non-secure world code by design.
Finally, the secure world invokes a function call back to the

non-secure world to receive data from an external entity. This
use is novel with respect to most TrustZone applications that
make an secure monitor call (SMC) from the non-secure world
and pass all of the non-secure data as an argument.
TRUST.IO’s low-effort implementation uses the existing
First Stage Boot Loader (FSBL) to initialize the board and
all of its peripherals'. TRUST.IO and the non-secure world
are then initialized immediately before the firmware enters its
main loop and starts interacting with the user (via the added
TRUST.IO function call). The step will automatically move all
of the code out of the “secure” world, and modify the permis-
sions appropriately, to execute the firmware in the hardware-
segregated “non-secure” world. Similarly, our Linux-based
implementation places the entire Linux OS into the non-secure
world. The setup function also configures the TEE to protect
both TRUST.IO itself and the requested peripheral memory-
mapped I/O (MMIO) regions before switching into the non-
secure world and continuing the normal firmware execution.

B. Implementation in TrustZone

By default, TrustZone systems boot with all of the config-
urable memory regions in ‘“secure only” mode, which means
that they are inaccessible from the non-secure world. Thus,
TRUST.IO first configures everything to be accessible from the
non-secure world, and then restricts the few memory regions
corresponding to the peripherals that are to be protected. All
of these peripherals are board-specific, and must be uniquely
configured for each deployment. TRUST.IO protects these
peripherals by explicitly listing the memory regions that are
security-critical, which are verified, and transparently permit-
ting access to all of the non-protected regions of memory.

To protect our verification algorithms and cryptographic
keys from being modified by the untrusted, non-secure world
code, they are placed in a protected region of memory. This
can be accomplished in two ways: 1) using a small region of
on-chip memory (OCM) or 2) using a region of random-access
memory (RAM) marked as secure. By marking the memory
that stores TRUST.IO-related code and data as secure-only, any
access to TRUST.IO code will go through its own verification
algorithm, which is configured to restrict all accesses. Simi-
larly, regions of non-volatile memory that contain TRUST.IO
code and data are marked as secure, preventing non-secure
code from modifying any non-volatile state.

1) Interrupts & Timers: Interrupts are configured in the
secure world, thus we must ensure they can still reach code
moved to the non-secure world. We configure interrupts in
two stages. First, after the FSBL, which executes in the
secure world, finishes, every interrupt is marked as non-
pending (using the pending clear register, ICDICPR). Next,
all of the interrupts are configured to be accessible from
the non-secure world (using the distributor control register,
ICDDCR). Then, non-secure interrupts are enabled, by setting
secure interrupts to use Fast Interrupt Requests (FIQs), and the

LAll boards by default boot in the secure world and, unless otherwise
configured, all of the code assumes that it is operating in the secure world.

Secure Binary Point Register is shared between both worlds
using the CPU Interface Control Register, TCCICR. Upon
switching into the non-secure world, the entire secure world
configuration is effectively cloned into the non-secure world
(i.e., the TCDICFRO, ICDIPR, ICDIPTR, ICDISER, and
ICDDCR registers).

Timers are significantly easier to configure as they are
all global. To enable the timers in the non-secure world,
TRUST.IO configures the Snoop Control Unit (SCU) register
to provide the non-secure world with access to both the private
and global timers.

2) External Abort Handler: TrustZone provides numerous
configurations for interrupts and exceptions that enable the
software to dictate which world (i.e., secure or non-secure) an
interrupt is directed to [23]. TRUST.IO modifies the Secure
Configuration Register to ensure that all external data aborts
(i.e., an abort thrown by a component outside of the CPU)
will be handled in monitor mode, effectively letting TRUST.IO
become a person-in-the-middle for all accesses to off-chip
peripherals. It is this abort handler that implements all of the
logic for TRUST.IO.

While there are numerous types of external aborts,
TRUST.IO only handles precise external data aborts (i.e., an
abort that occurs during an instruction prefetch) that are caused
by a denied, non-secure access. In the case of an external abort,
only three pieces of information are provided: 1) the Data Fault
Status Register (DFSR), which contains information about the
type of abort; 2) a banked link register, which can be used to
return from the abort and to infer the instruction that caused the
abort; and 3) the Data Fault Address Register (DFAR), which
contains the address that caused the fault (i.e., the protected
memory address). TRUST.IO uses these three registers to
both transparently execute non-protected accesses and enforce
a cryptographic challenge-response protocol with the Client
Device for protected memory regions. In our experience, all
of our observed aborts caused by access to protect MMIO
were precise, and thus could be handled. Others have shown
that memory can always be configured to force precise data
aborts in the event that imprecise data aborts are thrown [24].

To execute the requested operation (e.g., write a value to
memory), TRUST.IO must first disassemble the instruction that
caused the abort. The location of the instruction responsible
for the abort is pushed onto the secure stack. Necessarily, the
instruction must be either a str, 1dr, stc, 1dc, or swp, as
these are the only instructions that can be used to interact with
memory in ARM. Similarly, the DFSR contains information on
whether the instruction was a read or a write. Thus, TRUST.IO
is able to accurately disassemble which register that was the
source of a write or the destination of a read, and perform
the appropriate action with the source or destination address
provided in the DFAR.

C. Remote Callback Function

The remote callback function is critical to TRUST.IO, but it
need not be secure. The callback’s sole purpose is to facilitate
a communication channel with the Client Device to send and

receive encrypted data. While it may make sense, in some
cases, to implement a standalone program as the callback
function, we believe it is easier, and more convenient, to
simply reuse the existing channel (e.g., an IP protocol) that
is already open with the Client Device. In almost every case,
this channel must exist because the Client Device must have
issued an initial command to trigger the physical action.

D. Cryptographic Implementation

For our prototype, we implemented the minimal protocol
that would permit us to accurately assess the performance
impacts of our system, but do not claim that is either secure
or optimal. The protocol uses pre-shared 128 bit symmetric
keys and encryption is done using Advanced Encryption Stan-
dard (AES) [25] in cipher block chaining (CBC) mode. The
ciphertext includes the address being accessed (i.e., DFAR);
DFSR, which indicates whether a read or write was requested;
the value to be written or the value that was read; a nonce;
and a counter. The nonce is obtained from a global timer on
the system in our implementation; however, a hardware-based
random number generator would be preferred in practice. The
combination of the counter and nonce ensures that the plaintext
will never repeat, with the nonce providing a unique value for
each challenge-response interaction and the counter ensuring
that no messages can be replayed. Because we ensure that our
plaintext will never repeat, we simply use a static initialization
vector (IV) when initializing our AES cipher.

1) Key Management: We also implemented a simple key
update procedure, which would be required to adequately
diversify CPSes in practice. As implemented, our plaintext
challenges could potentially repeat after the counter is ex-
hausted, thus requiring the key to be periodically updated to
ensure long-term confidentiality.

Because of the limited user interface (UI) on these devices,
we do not require the developers to implement any special
functionality for updating keys. Instead, we simply trigger the
pairing procedure inside of any protected access, based on the
detection of a physical input (e.g., a button). For example, to
update the key on a smart bulb, the user would hold a button
on the light bulb, connect their Client Device to the light,
and issue the light “on” or “off” command. While reading
this physical interface during every interaction incurs some
overhead, the general approach ensures, again, that developers
need not worry about any security-related implementation
details. When the data abort handler is triggered, the button
will trigger a key update procedure in addition to the normal
access-control protocol. The Client Device would then update
the key, which is a symmetric key in our example, and would
be able to use this key for all subsequent accesses. Reusing
existing interactions not only satisfies our initial requirement
of minimal code modification, but is also practical for CPSes,
which inherently have limited user interfaces and methods
of interaction. Moreover, since the device initializes the key
exchange protocol, this enables the device to automatically
force a key update once it has exhausted its counter.

E. Client Implementation

The user experience on the Client Device does not change
at all, since all of the cryptographic verification is done in
the background, unbeknownst to the human user. This is
done by augmenting any command in the client that interacts
with protected functionality on the CPS with TRUST.IO-aware
versions, which is made possible by a library in the case of
our prototype implementation. Because each command (e.g.,
unlock door) is performed in a stateful way (i.e., the command
is sent, the challenge is received, and the response is sent),
there is no risk of the Client Device blindly responding to
an unsolicited challenge. Moreover, these augmented client
commands also check the freshness (i.e., that the request is
not a replay of an old challenge), the MMIO address, and
functionality (i.e., whether the CPS is reading or writing to
the value) of the challenge automatically, to ensure that no
malicious functionality on the CPS is trying to modify the
action or replay a previous challenge. The stateful protocol and
encryption ensure that the Client will approve the challenge if
and only if it issued the initial command.

1) Semantic Gap: TRUST.IO introduces an inherit semantic
gap where the enforcement of the policy is at a lower level
of abstraction than that actual of the command it seeks to
protect. For example, with the simple case of unlocking a
door, we actually want to protect the “unlock” command, but
instead TRUST.IO will see a memory address and the value
that is being written to it. Maintaining this correspondence
is quite tractable in practice. Indeed, the developer could
hardcode these values. Even easier however, these expected
values could be automatically inferred by training the Client
Device on the TRUST.IO-enabled device to infer which low-
level operations are induced by each high-level command. For
example, if TRUST.IO were placed in “learning” mode in
light bulb example, the user could simply turn the light on
and off and the Client code would automatically infer that on
should write 0x1 to 0x41200000 and the off should write
0x0 to the same address. These parameters would then be
stored permanently, and every subsequent command would be
protected by TRUST.IO.

V. EVALUATION

We implemented two indicative scenarios: a bare-metal
application that actuates a light-emitting diode (LED)
(Section V-A), and a Linux-based firmware that incorporates
TRUST.IO into existing drivers and applications (Section V-B).
In both of these instances, we built upon open-source imple-
mentations and initialized system with a pre-shared 128 bit
AES key and static IV.

For our complete, bare-metal implementation we used a Xil-
inx ZC702 board, which is equipped with a dual core Cortex-
A9 processor, operating at 333 MHz, with the TrustZone ex-
tensions enabled. While we would have preferred a TrustZone-
enabled Cortex-M development board as well, we were unable
to obtain an appropriate development board. Nevertheless, by
implementing TRUST.IO on the more complex A-series pro-
cessors, we demonstrate the generalizability of our approach

to all CPSes. Our Linux-based implementation was done on a
1.2 GHz HiKey development board, which is supported by the
Open Portable Trusted Execution Environment (OP-TEE) [26],
a popular open-source TEE.

A. Bare-metal Networking Application

For our bare-metal evaluation, we used a stand-alone net-
work “echo” program that uses the popular Light-Weight IP
(LWIP) library, which opens a Transmission Control Protocol
(TCP) server and echoes back any data sent to it. We modified
it to accept three ASCII commands: “on,” “off,” and “read,”
which will turn an LED on or off, or read the value stored in
the protected GPIO memory region. The state of the LED is
manipulated through MMIO, such that writing a 1 or O in that
memory location would turn the light on or off, respectively.
This kind of memory-mapped interaction is indicative of
various workflows that are common to embedded systems
(e.g., actuating a relay or transistor, controlling a motor, or
interacting with a peripheral device).

To enable TRUST.IO protections on this application, we first
added the MMIO address (0x4120000) to our list of pro-
tected memory regions, and added our setup and world switch-
ing function call right before the start_application()
function call in the main file of the source code. Thus, ensuring
that the firmware boots exactly as it did before, but with the
user-facing code isolated in the non-secure world, such that
any attempt to access the LED will be protected by TRUST.IO.

a) Callback function: To incorporate our callback func-
tion with the existing TCP connection, we made two parame-
ters global to use their state in our own callback function: (1)
the TCP protocol control block structure, which contains all of
the state information associated with the TCP connection, and
(2) a pointer to the receiver callback function that is triggered
when any data is received. Our callback first uses the TCP
protocol control block structure to send the challenge, and
then temporarily replaces the callback with our own simplified
receive function to obtain the response to the cryptographic
challenge. After the response is received, our callback restores
the TCP receive function and triggers the SMC instruction,
passing the returned cryptographic challenge back to our
secure world code, which verifies the response. This entire
callback function was implemented in 46 lines of C code.

1) Overhead: TRUST.IO is not only easy to add to an exist-
ing bare-metal application, but also has low system overhead,
both in terms of runtime and code size. Our implementation
was written almost entirely in ARM assembly to ensure
minimal overhead. First, we compiled the Executable and

TABLE I: Compiled binary size comparison of our bare-
metal prototype without TRUST.IO, with TRUST.IO, and with
TRUST.IO and an AES library

Total .text .data .bss

Unmodified 2,344,620 122,500 3,832 2,218,288
A T.IO 3,072 (0.13%) 2,424 (2.0%) 648 (14.5%) -
A T.IO+AES 16,436 (0.70%) 15,020 (12.3%) 1,416 (37.0%) -

Linkable Format (ELF) file of the binary with optimizations
(gce —01), with and without TRUST.IO enabled. Table | shows
that TRUST.IO adds only = 0.1% to the total binary size, with
a majority of that increase attributed to the 2,468 bytes, or 617
instructions, added to the .text segment. We consider this
a small increase in code size to gain the security guarantees
provided by TRUST.IO.

This increase does not include a cryptographic library within
the secure world. With our AES library included, the total
binary size still only increased by ~ 0.7%, with a majority
of that, again, stemming from the .text segment. In this
instance however, the .data segment also increased by 37%,
as we must allocate more memory for the keys and cryp-
tographic state. While the embedded components of CPSes
typically have stringent space constraints, we believe that a
worst-case, 16 Kilobyte overhead is a reasonable trade-off in
most scenarios.

We also evaluated the timing overhead incurred by
TRUST.IO. This was done by recording the end-to-end time
taken to turn the light on and off as observed from a Client
Device, both with and without TRUST.IO. The LED was
then cycled on and off 1,000 times, resulting in 2,000 to-
tal observations. The unmodified bare-metal server, without
TRUST.IO, yielded a round-trip time of 0.615(+0.082) ms.
With TRUST.IO enabled, we saw a significant increase in time,
now 204(+0.63) ms. However, this time is still well-below
empirically measured human response time [27], leaving the
end user experience unaltered. Additionally, we recorded the
individual operations associated with TRUST.IO, which show
that almost all of this increased time is spent in the non-
secure world communicating with the Client Device, and not
within the core TRUST.IO code. In fact, Table Il shows that
almost all of the time (= 200 ms) is spent interacting with
the Client Device over the network, with less than 0.4 ms
spent switching between worlds and enforcing access control.
Note that all but 0.001 ms of time in the secure world is
spent generating and verifying our cryptographic challenge
(i.e., 0.043 ms to generate the challenge and 0.35 ms to verify
it). The rest of the TRUST.IO code is thus only executing
for 0.002 ms on both protected writes and reads. While we
are confident that some engineering effort could speed up
Ethernet interactions and key generation, we find these results

TABLE 1II: Fine-grained timing of TRUST.IO implemented
on a bare-metal networking application running a 333 MHz
processor. The timings show how long it takes to intercept the
access and construct a cryptographic challenge in the secure
world (S: Data Abort), send the challenge to the Client Device
and receive a response in the non-secure world (NS: Callback),
and verify the response and perform the requested action (S:
Verify/Return), over 2,000 observations.

Command S: Data Abort NS: Callback S: Verify/Return

0.043 £ 0.0001 ms 203.8 £ 0.74 ms 0.35 % 0.0002 ms
0.043 £ 0.0001 ms 201.4 £ 1.49 ms 0.35 % 0.0002 ms

write
read

very encouraging, as the bottleneck is the user-implemented
callback and not the core TRUST.IO code.

For memory regions that are not protected by TRUST.IO
(i.e., unprotected external memory regions), the overhead
incurred by TRUST.IO acting as a passive person-in-middle
is less than 2 ns for both reads and writes to the memory-
mapped memory.

B. Linux-based Firmware

We demonstrate the generality of our system by extend-
ing TRUST.IO to support Linux-based systems as well. To
evaluate the feasibility on Linux-based embedded systems, we
implemented TRUST.IO on OP-TEE, which provides various
cryptographic functions that simplified our implementation.
We selected a minimal version of Debian [28] as our untrusted
OS, which required minimal additions to add TRUST.IO
support. In fact, we only needed to add 119 lines of C code
overall, with a majority of those executing in the secure world.

We implemented our prototype on the HiKey development
board, which has a 1.2 GHz processor. On the HiKey board,
peripherals can be configured to be secure-only by writing to
the corresponding bit in the TrustZone Peripheral Protection
Controller (TZPC) register; unfortunately, their TZPC imple-
mentation is proprietary. Thus, we were unable to set the exact
bit that needs to be set to configure a specific GPIO pin to be
secure-only [29].

Nonetheless, we implemented TRUST.IO by modifying the
GPIO driver to make an smc call when a TRUST.IO-protected
GPIO pin is accessed. Thus, all of the proper TRUST.IO
actions are taken, allowing us to accurately measure the
incurred overhead. However, without access to the TZPC, an
attacker with root privileges could subvert this prototype by
writing to the memory directly. In a real-world deployment,
where the TZPC configuration is known, we simply need
to add a few lines of code to the initialization of OP-TEE
to enable the hardware-enforced memory protections (i.e.,
SLAVE_PROTX_SET and GPIO_SEC_ONLY).

To evaluate the performance of TRUST.IO on Linux-based
CPSes, we implemented a networking application that is
similar to the LED example on the bare-metal system (i.e., it
accepts commands and actuates an on-board LED). The round-
trip overhead of reading and writing to a GPIO pin using
TRUST.IO is 5.399(+0.413) ms and 5.562(+0.401) ms,
respectively. Table Ill shows the fine-grained timings of the
various components. All measurements are averaged over
2,000 observations. Similar to the bare-metal implementation,
most of the time is spent in the non-secure world callback
interacting with the Client Device.

TABLE III: Fine-grained timing of our TRUST.IO imple-
mented on a Debian based OP-TEE running on HiKey board
with a 1.2 GHz processor, over 2,000 observations

Command Secure Protection NS Callback Secure Verify/Return

0.278 £0.001 ms 4.115+£0.184 ms 0.173 £ 0.007 ms
0.287 £ 0.006 ms 4.450 £0.170 ms 0.176 £ 0.004 ms

write
read

VI. LIMITATIONS

TRUST.IO has a few fundamental limitations. First, it
requires a TrustZone-enabled processor. Because of the ad-
ditional round-trip time, TRUST.IO may not be appropriate
in certain time-critical applications (e.g., anti-lock brakes).
Our experiments demonstrate that a TRUST.IO-enabled system
with 333 MHz processor can reply to periodic sensor readings
or actuation at a rate of up to ~ 5 commands per second.

Infinite control loops (e.g., do X every Y seconds),
which are common on CPSes are currently not supported by
TRUST.IO. If the Client Device is always present, it could in
fact continuously authenticate these actions, ensuring proper
operation of the device. If the Client Device is removed
however, TRUST.IO would need to be extended to not only
protect the I/O operation but to encapsulate the entire loop
to ensure that no deviation from the approved action in the
loop could ever be taken. However, in many cases (e.g., an IP
camera) this limitation does not apply, as the initial activation
of the action could be guarded with TRUST.IO (i.e., turn on the
camera), while the subsequent loop could be left unprotected
(e.g., reading image frames out of memory).

VII. RELATED WORK

Control Flow Integrity (CFI) [30]: ECFI [31] was the first
system that tried to enforce CFI for PLC firmware using
compile-time instrumentation. These techniques, although ef-
ficient, are highly customized to PLC-based firmware, and
their performance on other Linux-based firmware is unclear.
mShield [32] uses a combination of runtime instrumentation
and selective system call hooking to enforce relaxed back-
ward edge CFI on commercial off-the-shelf binaries running
on Linux-based OSes. However, it is still susceptible to kernel
exploits and needs operating system support. MProsper [33]
uses a hypervisor to prevent code injection attacks by enforc-
ing the W@X property on guest OS code pages. However,
W@X is a weak guarantee and cannot prevent classic code-
reuse attacks [34], [35]. Orpheus [36] uses anomaly detection
techniques to identify data-oriented attacks. However, this
technique only works on embedded systems which run a
Linux-like OS. In addition to the relative weaknesses, all
of these techniques have a prohibitive performance impact.
IBMAC [37] tries to improve performance by using custom
hardware for an efficient implementation of shadow stack.
However, the required hardware modifications are intrusive
and could affect the overall stability of the device.

Software attestation [38], [39]: Swatt [40] provides an at-
testation mechanism on memory contents, without hardware
support. This technique is improved by ASSW [41], by using
stride access instead of complete memory access. However,
these techniques expect to have a trusted software component
on the device, which is hard to enforce without a trusted
or isolated execution environment. SEDA [17] provides an
approach to perform remote attestation without hardware
support. However, while SEDA can attest the validity of the
software on the system, it cannot defend against illegitimate
commands, leaked credentials, modified sensor readings, or

hard-coded backdoors. Unlike CFI and software attestation,
which try to prevent software compromise, TRUST.IO aims to
protect the device in spite of a complete software compromise.
TrustZone-based protections [42]: ARM TrustZone provides
an isolated privileged execution environment, and has been
used to implement various features [43]-[46]. C-Flat [18] is
one the first techniques that use ARM TrustZone to provide
control-flow attestation. C-Flat expects a prior control-flow
model to be available for all binaries, which might not be
possible for proprietary and legacy binaries. VButton [21]
is another system which leverages ARM TrustZone to attest
user-driven actions. However, unlike TRUST.IO, this is not
transparent, as it requires modifications to the entire system
stack (i.e., the untrusted app, the untrusted OS, the TEE,
and the server side implementation of the corresponding
application). SKEE [47] uses TZ-based page table protections
to enforce kernel integrity, however extending this technique
to bare-metal embedded systems is not trivial.

Peripheral access control: EPOXY [48] is the first system
that tries to use a software solution based on Privilege Overlays
to protect the access to physical interfaces. This system is
based on an LLVM-based embedded compiler and has source
code restrictions. In contrast, TRUST.IO is easily applied to ex-
isting bare-metal firmware without additional instrumentation
or restrictions. Furthermore, TRUST.IO signs its responses,
protecting from peripheral person-in-the-middle attacks [49].
SeCloak [24], which is a TrustZone-based system designed
to provide a fine-grained peripheral control on modern smart
phones. This system used a custom secure kernel which medi-
ates the access to all peripherals using abort handlers, similar
to TRUST.IO. The user can set access control restrictions to
the desired peripherals using an untrusted user mode app. This
configuration is then confirm with the user using a trusted
interface from the secure world. Indeed, SeCloak also uses
data abort exceptions in the same way that TRUST.IO does
to enforce its restrictions. However, the goals of the two
systems are quite distinct. SeCloak aims to provide users
with a trustworthy way to restrict access to peripherals on
the same device that they are using (i.e., their smartphone),
while TRUST.IO ensures that only accesses from vetted Client
Devices are permitted, thwarting malware and unsolicited
commands. SeCloak also requires the device tree file for
configuration, which is not available in case of the bare-metal
systems. Finally, it requires a custom secure kernel, which

TABLE IV: Comparison table of TRUST.IO alternatives

S &

& &

&é{) & Q_@%&‘
& & g & &
¥ &] &q} & &
& oo & o% fv&

Solution ~® < <+ <5 <
VButton [21] X X X X X
EPOXY [48] v v v X X
SeCloak [24] X X v v v
TRUST.IO Vv v v v v

makes SeCloak inapplicable to existing secure kernels and
impractical on bare-metal systems.

VIII. CONCLUSION

As networked CPSes continue to replace traditionally analog
systems (e.g., smart homes, automobiles, and components of
the critical infrastructure), the need to secure their physical
interfaces is of paramount importance. To address this growing
concern, we present TRUST.IO, a framework that is capable
of protecting the physical interfaces of CPSes in a transparent
way, even in cases where the firmware is completely compro-
mised at runtime. TRUST.IO leverages the TEEs (e.g., Trust-
Zone) available on modern processors, to cryptographically
verify any access to protected peripherals on a CPS device
with a trusted Client Device (e.g., a car key, smartphone,
or centralized controller). TRUST.IO provides cryptographic
assurance that the command was initiated, and validated by
the Client Device, preventing any malicious software on the
CPS itself from accessing the interface directly or spoofing
read values. We demonstrate that TRUST.IO is practical by
providing prototypes for both bare-metal and Linux-based
firmware. Both implementations required minimal modifica-
tions to their respective source, and had a minimal runtime
overhead of ~ 200 ms on our slower bare-metal system and
of less than 10 ms on the faster Linux-based environment.
TRUST.IO provides a necessary additional layer of defense to
help mitigate attacks against these critical physical interfaces.

ACKNOWLEDGEMENTS

This paper is dedicated to Kevin Leach and Yu Huang, mar-
ried on May 6th, 2017. Congratulations, and may the future
hold nothing but happiness for you both. This material is based
upon work supported by the Office of Naval Research (ONR)
(Award No. N00014-17-1-2011) and by the Department of
Homeland Security (DHS) (Award No. FA8750-19-2-0005).
Any opinions, findings, and conclusions or recommendations
expressed in this publication are those of the author(s) and
do not necessarily reflect the views of the ONR or DHS. This
was work was also supported by the IBM PhD Fellowship that
was awarded to Chad Spensky.

REFERENCES

[11 Y. Mo, T. H.-J. Kim, K. Brancik, D. Dickinson, H. Lee, A. Perrig, and
B. Sinopoli, “Cyber—physical Security of a Smart Grid Infrastructure,”
Proceedings of the IEEE, vol. 100, no. 1, pp. 195-209, 2012.

[2] 1. Lee, O. Sokolsky, S. Chen, J. Hatcliff, E. Jee, B. Kim, A. King,
M. Mullen-Fortino, S. Park, A. Roederer et al., “Challenges and Re-
search Directions in Medical Cyber-Physical Systems,” Proceedings of
the IEEE, vol. 100, no. 1, pp. 75-90, 2012.

[3] M. Stanislav and T. Beardsley, “Hacking iot: A case study on baby
monitor exposures and vulnerabilities,” Rapid7 Report, 2015.

[4] J. Radcliffe, “Hacking Medical Devices for fun and insulin: Breaking
the human SCADA systemun and Insulin: Breaking the Human SCADA
System,” in BlackHat, vol. 2011, 2011.

[5] A. Abbasi and M. Hashemi, “Ghost in the PLC: Designing an Unde-
tectable Programmable Logic Controller Rootkit via Pin Control Attack,”
BlackHat Europe, 2016.

[6] N. Falliere, L. O. Murchu, and E. Chien, “W32. Stuxnet Dossier,” White
paper, Symantec Corp., Security Response, vol. 5, no. 6, 2011.

[7] J. Hall and B. Ramsey, “Breaking Bulbs Briskly by Bogus Broadcast,”
in Shmoocon, 2016.

[8]

[9]

[10]

(11]

[12]

[13]
[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]
[24]
[25]
[26]

[27]

[28]

[29]

[30]

E. Ronen, C. O’Flynn, A. Shamir, and A.-O. Weingarten, “IoT Goes
Nuclear: Creating a ZigBee Chain Reaction,” http://iotworm.eyalro.net/
iotworm.pdf, 2016.

Jmaxxz, “Backdooring the Frontdoor,” in Defcon, 2016. [Online].
Available: https://media.defcon.org/DEF%20CON%2024/DEF%
20CON%2024%?20presentations/DEFCON-24-Jmaxxz-Backdooring-
the-Frontdoor.pdf

S. Gayou, “Remote Code Execution on the Smiths Medical Med-
fusion 4000,” https://github.com/sgayou/medfusion-4000-research/blob/
master/doc/README.md, January 2018.

G. Wassermann, “NXP Semiconductors MQX RTOS Contain Multiple
Vulnerabilities,” https://www.kb.cert.org/vuls/id/590639, October 2017.
A. Greenberg, “Hackers Gain Direct Access to US Power Grid
Controls,” https://www.wired.com/story/hackers- gain-switch-flipping-
access-to-us-power-systems/, September 2017.

M. B. Barcena and C. Wueest, “Insecurity in the internet of things,”
Security Response, Symantec, 2015.

“CVE-2017-9765: Devil’s Ivy,” https:/nvd.nist.gov/vuln/detail/CVE-
2017-9765, 07 2017.

X. Carpent, K. Eldefrawy, N. Rattanavipanon, A.-R. Sadeghi, and
G. Tsudik, “Reconciling remote attestation and safety-critical operation
on simple iot devices,” in 2018 55th ACM/ESDA/IEEE Design Automa-
tion Conference (DAC). 1EEE, 2018, pp. 1-6.

J. Noorman, P. Agten, W. Daniels, R. Strackx, A. Van Herrewege,
C. Huygens, B. Preneel, I. Verbauwhede, and F. Piessens, “Sancus: Low-
cost Trustworthy Extensible Networked Devices with a Zero-software
Trusted Computing Base,” in Proceedings of the USENIX Security
Symposium, 2013, pp. 479-494.

N. Asokan, F. Brasser, A. Ibrahim, A.-R. Sadeghi, M. Schunter,
G. Tsudik, and C. Wachsmann, “SEDA: Scalable Embedded Device
Attestation,” in Proceedings of the 22nd ACM SIGSAC Conference on
Computer and Communications Security. ACM, 2015, pp. 964-975.
T. Abera, N. Asokan, L. Davi, J.-E. Ekberg, T. Nyman, A. Paverd,
A.-R. Sadeghi, and G. Tsudik, “C-FLAT: Control-Flow Attestation for
Embedded Systems Software,” in Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security. ACM, 2016,
pp. 743-754.

D. I. Urbina, J. A. Giraldo, A. A. Cardenas, N. O. Tippenhauer,
J. Valente, M. Faisal, J. Ruths, R. Candell, and H. Sandberg, “Limiting
the Impact of Stealthy Attacks on Industrial Control Systems,” in
Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security. ACM, 2016, pp. 1092-1105.

J. M. McCune, B. J. Parno, A. Perrig, M. K. Reiter, and H. Isozaki,
“Flicker: An execution infrastructure for TCB minimization,” in Pro-
ceedings of the ACM SIGOPS Operating Systems Review, vol. 42, no. 4.
ACM, 2008, pp. 315-328.

W. Li, S. Luo, Z. Sun, Y. Xia, L. Lu, H. Chen, B. Zang, and H. Guan,
“Vbutton: Practical attestation of user-driven operations in mobile apps,”
in Proceedings of the 16th Annual International Conference on Mobile
Systems, Applications, and Services. ACM, 2018, pp. 28—40.

M. Antonakakis, T. April, M. Bailey, M. Bernhard, E. Bursztein,
J. Cochran, Z. Durumeric, J. A. Halderman, L. Invernizzi, M. Kallitsis
et al., “Understanding the mirai botnet,” in 26th {USENIX} Security
Symposium ({USENIX} Security 17), 2017, pp. 1093-1110.

R. Lynx, “How to Use ARM’s Data-abort Exception,” Embedded Sys-
tems Design, vol. 19, no. 8, p. 46, 2006.

M. Lentz, R. Sen, P. Druschel, and B. Bhattacharjee, “Secloak: Arm
trustzone-based mobile peripheral control,” 2018.

kokke, “Tiny aes in c,” https://github.com/kokke/tiny- AES-c, March
2018.

“Open Portable Trusted Execution Environment,” http://www.op-
tee.org.

K. Amano, N. Goda, S. Nishida, Y. Ejima, T. Takeda, and Y. Ohtani,
“Estimation of the timing of human visual perception from magnetoen-
cephalography,” Journal of Neuroscience, vol. 26, no. 15, pp. 3981-
3991, 2006.

STMicroelectronics and Linaro Security Working Group, “Open Source
TEE with Debian,” https://github.com/OP-TEE/build/blob/master/docs/
hikey.md.

——, “How do I control GPIO,” https://github.com/OP-TEE/optee_os/
issues/1065.

M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti, “Control-flow
integrity,” in Proceedings of the 12th ACM conference on Computer
and communications security. ACM, 2005, pp. 340-353.

[31]

[34]

(35]

(36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

A. Abbasi, T. Holz, E. Zambon, and S. Etalle, “ECFI: Asynchronous
Control Flow Integrity for Programmable Logic Controllers,” in Pro-
ceedings of the 33rd Annual Computer Security Applications Confer-
ence. ACM, 2017, pp. 437-448.

A. Abbasi, J. Wetzels, W. Bokslag, E. Zambon, and S. Etalle, “m Shield
- Configurable Code-Reuse Attacks Mitigation For Embedded Systems,”
in NSS, 2017.

H. Chfouka, H. Nemati, R. Guanciale, M. Dam, and P. Ekdahl, “Trust-
worthy Prevention of Code Injection in Linux on Embedded Devices,”
in European Symposium on Research in Computer Security. Springer,
2015, pp. 90-107.

R. Roemer, E. Buchanan, H. Shacham, and S. Savage, “Return-oriented
pPogramming: Systems, Languages, and Applications,” Proceedings of
the ACM Transactions on Information and System Security (TISSEC),
vol. 15, no. 1, p. 2, 2012.

N. Carlini, A. Barresi, M. Payer, D. Wagner, and T. R. Gross, “Control-
Flow Bending: On the Effectiveness of Control-Flow Integrity,” in
Proceedings of the USENIX Security Symposium, 2015, pp. 161-176.
L. Cheng, K. Tian, and D. D. Yao, “Orpheus: Enforcing Cyber-physical
Execution Semantics to Defend Against Data-Oriented Attacks,” in
Proceedings of the 33rd Annual Computer Security Applications Con-
ference. ACM, 2017, pp. 315-326.

A. Francillon, D. Perito, and C. Castelluccia, “Defending Embedded
Systems Against Control Flow Attacks,” in Proceedings of the First
ACM Workshop on Secure Execution of Untrusted Code, ser. SecuCode
’09. New York, NY, USA: ACM, 2009, pp. 19-26. [Online]. Available:
http://doi.acm.org/10.1145/1655077.1655083

F. Armknecht, A.-R. Sadeghi, S. Schulz, and C. Wachsmann, “A Security
Framework for the Analysis and Design of Software Attestation,”
in Proceedings of the 2013 ACM SIGSAC Conference on Computer
Communications Security, ser. CCS. ACM, 2013.

J. Valente, C. Barreto, and A. A. Cardenas, “Cyber-Physical Systems
Attestation,” in Proceedings of the 2014 IEEE International Conference
on Distributed Computing in Sensor Systems, ser. DCOSS "14. Wash-
ington, DC, USA: IEEE Computer Society, 2014.

A. Seshadri, A. Perrig, L. Van Doorn, and P. Khosla, “Swatt: Software-
based Attestation for Embedded Devices,” in Proceedings of the 2004
IEEE Symposium on Security and Privacy. 1EEE, 2004, pp. 272-282.
B. Chen, X. Dong, G. Bai, S. Jauhar, and Y. Cheng, “Secure and
Efficient Software-based Attestation for Industrial Control Devices with
ARM Processors,” in Proceedings of the 33rd Annual Computer Security
Applications Conference, ser. ACSAC 2017. New York, NY, USA:
ACM, 2017.

ARM, “ARM TrustZone,” http://www.arm.com/products/processors/
technologies/trustzone/index.php, 2015.

J. Jang, S. Kong, M. Kim, D. Kim, and B. B. Kang, “SeCReT: Secure
Channel between Rich Execution Environment and Trusted Execution
Environment,” Proceedings of Network and Distributed Systems Sympo-
sium, 2015.

L. Guan, P. Liu, X. Xing, X. Ge, S. Zhang, M. Yu, and T. Jaeger,
“TrustShadow: Secure Execution of Unmodified Applications with ARM
TrustZone,” arXiv preprint arXiv:1704.05600, 2017.

S. Zhao, Q. Zhang, G. Hu, Y. Qin, and D. Feng, “Providing Root of
Trust for ARM Trustzone Using On-chip SRAM,” in Proceedings of the
4th International Workshop on Trustworthy Embedded Devices. ACM,
2014, pp. 25-36.

C. Marforio, N. Karapanos, C. Soriente, K. Kostiainen, and S. Capkun,
“Smartphones as Practical and Secure Location Verification Tokens
for Payments,” in Proceedings of the Network and Distributed System
Security, 2014.

A. M. Azab, K. Swidowski, R. Bhutkar, J. Ma, W. Shen, R. Wang,
and P. Ning, “SKEE: A Lightweight Secure Kernel-level Execution
Environment for ARM,” in Proceedings of the Network and Distributed
System Security. Internet Society, 2016.

A. A. Clements, N. S. Almakhdhub, K. S. Saab, P. Srivastava, J. Koo,
S. Bagchi, and M. Payer, “Protecting Bare-metal Embedded Systems
With Privilege Overlays,” Proeceedings of the IEEE Security and
Privacy Symposium, 2017.

P. Stewin, “A Primitive for Revealing Stealthy Peripheral-based Attacks
on the Computing Platform’s Main Memory,” in Proceedings of the
International Workshop on Recent Advances in Intrusion Detection.
Springer, 2013, pp. 1-20.

