
UC Santa Barbara
UC Santa Barbara Electronic Theses and Dissertations

Title
Analyzing and Securing Embedded Systems

Permalink
https://escholarship.org/uc/item/7236g5dx

Author
Spensky, Chad

Publication Date
2020

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7236g5dx
https://escholarship.org
http://www.cdlib.org/

University of California
Santa Barbara

Analyzing and Securing Embedded Systems

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy

in

Computer Science

by

Chad Samuel Spensky

Committee in charge:

Professor Giovanni Vigna, Co-Chair
Professor Christopher Kruegel, Co-Chair
Professor Timothy Sherwood
Professor Fabian Monrose, University of North Carolina at Chapel Hill

September 2020

The Dissertation of Chad Samuel Spensky is approved.

Professor Timothy Sherwood

Professor Fabian Monrose, University of North Carolina at Chapel Hill

Professor Christopher Kruegel, Committee Co-Chair

Professor Giovanni Vigna, Committee Co-Chair

July 2020

Analyzing and Securing Embedded Systems

Copyright © 2020

by

Chad Samuel Spensky

iii

This work is dedicated to Dr. William Hunter Vaughan for

inspiring me and cultivating my love for math and science.

iv

Acknowledgements

Where to start... There are so many people that have helped, inspired, and pushed

me to make this degree, and my career, possible. First, I need to acknowledge the obvious

two — my biological parents — Steve Spensky and Linda Lovy, for bringing me into this

world and supporting me throughout my various career decisions. I would also like to

acknowledge my “pap pap,” Ralph Mills, for showing me what hard work looks like (he

worked three time jobs as a mechanic, a coal miner, and a crane operator while raising

12 children) and demonstrating the difference between simply living and living well —

being surrounded by people who love and adore you. Next, is the man who taught me

the meaning of family, inspired me to believe in myself, showed me what it means to be

southern gentleman. Hunter Vaughan, my non-biological dad, has supported me in too

many ways to count, and my life would be no where near as great as it has been without

him in it.

My pursuit of this degree undoubtedly stemmed from a few of the life-changing teach-

ers that I have interacted with throughout my education. I was a C student with little

aspirations of post-secondary school, until a notable semester during my Junior year at

Brooke High School. Peggy Walker (my Pre-Calculus and Trigonometry teacher) and

Glenn Berkheimer (my Physics teacher) changed my view on education. They were the

only teachers up to that point that let do Mathematics my way — mentally, without

showing work, and very quickly — and supported my methods. For the first time in my

life, I not only felt “smart,” but knew that I was capable of great things. At the university

level, Robert Heath (my Introduction to Theoretical Mathematics Professor) solidified

my love for Mathematics. His brilliance, dry humor, and Mathematical creativity were

awe inspiring — I still recite his “golf ball” problem to this day. Alexandros Labrinidis

and Panos K. Chrysanthis introduced me to research, which played a significant role in

v

my pursuit of a Ph.D., and facilitated my acceptance to the various graduate programs.

Their guidance and mentorship was invaluable, and showed me, first hand, how much

of a positive influence a great professor can be to a young, motivated student — I have

been trying to pay it forward ever since.

I am forever grateful for Michael K. Reiter for taking a gamble on me and introducing

me to Computer Security as a profession, versus the potentially-criminal activity that I

was previously using it for. His mentorship, wisdom, and work ethic have made me the

researcher that I am today — I still here Mike’s voice every time I create a macro in a

LATEX document. I want to acknowledge Fred Brooks for showing me the true meaning of

humility and being so generous with his time and knowledge, despite his legendary status

in our field. I similarly hear Fred’s wise words in my head when conducting research,

giving presentations, and interacting colleagues — “Tell them what your going tell ’em,

tell ’em, then tell them you told ’em.” Fabian Monrose saved my career, and for that I feel

forever indebted. I vividly recall our conversation over coffee where I told him, “I want

to drop of graduate school.” Fabian was able to help me work through my situation and

lent a desperately needed ear and outside prospective. He would ultimately introduce me

to Charles V. Wright, who then hired me at MIT Lincoln Laboratory as an intern and

was later my supervisor and mentor when I joined the technical staff. Charles provided

me with some of the greatest career advice of my life, and I still model my management

style after him. I recite his words regularly, and even use them as a mantra in my life,

“Any time that you can exchange money for time, do it.” In context, we were discussing

work, but these words echo deeper — we can always make more money; we cannot make

more time.

I would also like to acknowledge some of my colleagues that inspired me to push

myself professionally and helped me achieve the success that I have thus far. I want to

acknowledge Samuel Kerr for keeping me honest on getting to work on time, “First!” and

vi

for being the first person to bridge my two worlds and become a great personal friend

and an incredible colleague. Hongyi Hu is easily the most influential coworker that I

have had thus far. Without him, my career at MIT LL would have been nowhere near as

successful as it was — his impressive intelligence, methodic engineering principles, and

calm demeanor were a necessary balance to my more gun-slinging style of conducting

research. Similarly, Ben Nahill is one of the most interesting and inspiring people that

I have met — he is uncomfortably smart, has a breadth of impressive talents, and is an

all around great guy. Working with Ben always inspired me to push myself and to set

evermore ambitious goals. Our Turning Machine is still the most fun I have ever had

engineering anything. I need to acknowledge the amazing interns that have worked under

me, Rick Housley and Kevin Leach. They kept me humble and pushed me to continue

improving (because they were way smarter than me), showed me how rewarding it can

be to share knowledge and success with others, and were large motivators for pursing

this degree (i.e., I realized how enjoyable mentoring and teaching was).

I am also indebted to the various managers that inspired me in my time at MIT LL.

Eric Evans, the director of the lab, is another whose words frequently echo in my head,

“20% of the things that you try should fail; otherwise you are not pushing the limits

hard enough.” I always remind myself of these words when failures inevitably happen —

failures are necessary and expected, not something to be feared. My group leaders, Lee

Rossey, John Wilkinson, and Roger Khazan have provided me with saint-like support

and encouragement. Lee let me push the limits with my research and put full trust in

me, despite my young age at the time, enabling me to produce some of the most fun and

exciting work that I have ever done. John’s support when I decided to return to pursue

my Ph.D. was one of the greatest displays of altruism I have ever seen — it was clearly a

loss to his team, but he was still eager to support my dreams. Roger’s continued support

and mentorship during my Ph.D. through the various projects that we have worked on

vii

together has helped me become a “professional” and also helped keep my head up during

the unavoidable tough times in graduate school.

Outside of my advisors, there are others who have unofficially co-advised me through

this process. I have worked on so many projects with Hamed Okhravi and learned so

much from him as a researcher at this point that it is hard to believe that there is no

official “advisor” title connected to his name. Westley Weimer is another professor that

has come to embody what an academic should be in my mind — absolutely brilliant,

committed to advancing human knowledge, and always looking to pull those around him

up. Hani Jamoon and Zhongshu Gu provided invaluable guidance during my time at

IBM Research. My internship at IBM Research was during a low psychological point

in my life and I am sure that my gratitude was not appropriately conveyed, but I will

always cherish my memories of Yorktown Heights and the amazing people that I got to

work with at IBM. Receiving the IBM Ph.D. Fellowship is still one of the highlights of

my life, and came at time when I desperately needed some reassurance in myself as a

person and as researcher; I am forever grateful and beyond proud to have received this

award. Dick Kemmerer has been in the background helping me throughout me degree,

providing guidance, historical insights, and plenty of good laughs.

I also want to acknowledge the Club Football team at the University of North Carolina

at Chapel Hill. Easily, one of the greatest experience of my life was playing football under

Coach Featherstone. Being a part of that team showed me what a brotherhood was, gave

me infinite confidence in myself, and made a man out me. I would not be the person

that I am today or have the work ethic that I do today without this experience. It is not

every day that meet someone that truly, 100% loves what they do — Feathers did. He

loved football and I am honored to have shared this passion with him and my teammates

— “We all we got!” Similarly, I want to acknowledge all of the members of Shellphish.

I thought I was good at hacking and understood computer security, until I met these

viii

guys. Again, the passion that they bring and their deep technical knowledge have always

pushed me to learn more and be a better security practitioner.

I also need to acknowledge all of the friends that I have made throughout my life.

There are far too many to list explicitly, but my childhood friends, everyone at Pitt,

my fellow Semester at Sea “adventurers,” my Tar Heel friends, Spike Yo’ Drank and

other Boston friends, and the incredible people that I have befriended in California, have

made my life exceptional. I could not imagine any better friends, and it would have been

impossible to achieve any of my success without their support.

Finally, I cannot express enough gratitude for Chris Kruegel and Giovanni Vigna,

my advisors. They are the reason that I have a career at all in Computer Security at

all. I met them in 2008 during a prospective graduate student visitation weekend, after

being accepted to UCSB’s Ph.D. program as a Bioinformatics student. I recall meeting

Giovanni in the lobby and discussing his research on “underground economies,” which I,

unbeknownst to him, used to play a significant role in. Until then, I had never considered

security as a career path. But I was instantly hooked and determined to study computer

security for my Ph.D. Throughout my career, I kept tabs on the SecLab, spent some time

with Giovanni in Saint Lucia at a conference, and would later have “the talk” about me

leaving my job and pursuing a Ph.D. at UCSB during the Blackhat conference in Las

Vegas. As they say, “the rest is history.” My time in the SecLab, under their mentorship,

has far surpassed my expectations. Giovanni and Chris are two of the most impressive

people that I have met and the culture and community that they have created through

the SecLab, iSecLab, and Shellphish is second to none. The people that I have met, the

skills that I have acquired, and the day-to-day life in the SecLab were incredible and

are memories that I will forever cherish. Indeed, I have already found myself copying

many aspects of their management style and work culture in my own endeavors — they

succeeded in creating something very special and I will do my best to share a piece of

ix

that with others.

I have always believed that life is journey and have always tried to enjoy the ride,

wherever it may take me. I am fortunate enough to have lived a very full life thus far,

experiencing both extremely low lows and extraordinary high, high points. Some of these

high points were beyond my wildest dreams. The book of my life has been incredible thus

far, and I cannot wait to see what future chapters hold for me. Receiving this degree is

just another affirmation that anything is possible if you want it enough and are willing

to work hard to make it happen. As Jay Z famously said,

“Difficult takes a day, impossible takes a week.”

x

Curriculum Vitæ
Chad Samuel Spensky

Education

2020 Ph.D. in Computer Science, University of California, Santa Barbara.

2010 M.S. in Computer Science, University of North Carolina at Chapel
Hill.

2008 B.S. in Computer Science and Mathematics, University Pittsburgh.

Publications

1. Chad Spensky, Aravind Machiry, Marcel Busch, Kevin Leach, Rick Housley, Christo-
pher Kruegel, Giovanni Vigna. TRUST.IO: Protecting Physical Interfaces on Cyber-
physical Systems. CNS 2020.

2. Aaron Mills, Donato Kava, Alice Lee, Chad Spensky, Stephen Eng, Michael Vai.
Trust, Assurance, and Protection for Microelectronics. GOMACTech 2020.

3. Nilo Redini, Aravind Machiry, Ruoyu Wang, Chad Spensky, Andrea Continella,
Yan Shoshitaishvili, Giovanni Vigna, Christopher Kruegel. KARONTE: Detecting
Insecure Multi-binary Interactions in Embedded Firmware. Oakland 2020.

4. Bryan C. Ward, Richard Skowyra, Chad Spensky, Jason Martin, Hamed Okhravi.
The Leakage-Resilience Dilemma. ESORICS 2019.

5. Eric Gustafson, Marius Muench, Chad Spensky, Nilo Redini, Aravind Machiry, Da-
vide Balzarotti, Yanick Fratantonio, Aurelien Francillon, Yung Ryn Choe, Christo-
pher Kruegel, Giovanni Vigna. Toward the Analysis of Embedded Firmware through
Automated Re-hosting. RAID 2019.

6. Kevin Leach, Ryan Dougherty, Chad Spensky, Stephanie Forrest, Westley Weimer.
Evolutionary Computation for Improving Malware Analysis. GI Workshop 2019.

7. Dokyung Song, Felicitas Hetzelt, Dipanjan Das, Chad Spensky, Yeoul Na, Stijn
Volckaert, Giovanni Vigna, Christopher Kruegel, Jean-Pierre Seifert, Michael Franz.
PeriScope: An Effective Probing and Fuzzing Framework for the Hardware-OS Bound-
ary. NDSS 2019.

8. DR. CHECKER: A Soundy Analysis for Linux Kernel Drivers Aravind Machiry,
Chad Spensky, Jacob Corina, Nick Stephens, Christopher Kruegel, Giovanni Vigna

9. Aravind Machiry, Eric Gustafson, Chad Spensky, Chris Salls, Nick Stephens, Ruoyu
Wang, Antonio Bianchi, Yung Ryn Choe, Christopher Kruegel, Giovanni Vigna.
BOOMERANG: Exploiting the Semantic Gap in Trusted Execution Environments.
NDSS 2017

10. Chad Spensky, Jeffrey Stewart, Arkady Yerukhimovich, Richard Shay, Ari Tracht-
enberg, Rick Housley, Robert K. Cunningham. SoK: Privacy on Mobile Devices –
It’s Complicated. PETS 2016.

xi

11. Kevin Leach, Chad Spensky, Westley Weimer, Fengwei Zhang. Towards Transparent
Introspection. SANER 2016.

12. Chad Spensky, Hongyi Hu, Kevin Leach. LO-PHI: Low-Observable Physical Host
Instrumentation for Malware Analysis. NDSS 2016

13. Andrew Weinert, Hongyi Hu, Chad Spensky, Benjamin Bullough. Using Open-
source Hardware to Support Disadvantaged Communications. GHTC 2015.

14. Chad Spensky, Hongyi Hu. Live Disk Forensics on Bare Metal. OSDFCon 2014.

15. Lujo Bauer, Yuan Liang, Michael K. Reiter, Chad Spensky. Discovering Access-
control Misconfigurations: New Approaches and Evaluation Methodologies. CO-
DASPY 2012.

16. Michael K. Reiter, Vyas Sekar, Chad Spensky, Zhenghao Zhang. Making peer-
assisted content distribution robust to collusion using bandwidth puzzles. ICISS 2009.

Patents

1. Hongyi Hu, Chad Spensky. Systems and Methods for Single Device Authentication.
US Patent #US10182040B2.

xii

Abstract

Analyzing and Securing Embedded Systems

by

Chad Samuel Spensky

Embedded systems (i.e., single-purpose computers with tightly-coupled software and

hardware) are now pervasive throughout in our increasingly digitized world. Due to

the rapid growth of the embedded systems industry and the commercial pressure to

implement new features, most of these systems are built using insecure hardware and

have numerous latent software vulnerabilities. Unfortunately, the diversity of physical

hardware and software implementations on these various systems along with their tight

coupling between software and hardware have rendered most of our existing automated

security analysis techniques ineffective. Attackers currently have the upper hand, as they

need only discover a single vulnerability, whereas defenders must manually identify, and

fix, all of the existing vulnerabilities. To make matters worse, many of these vulnerable

embedded systems can interact with the physical world and, if compromised, could cause

serious damage (e.g., a public utility) or even death (e.g., a medical device). To rectify

this calamitous situation that we have created, we must be able to 1) identify and fix

problems with the existing systems that are already deployed and 2) create future systems

that are fundamentally secure, by design.

Embedded systems are more difficult to analyze than traditional computers because

the hardware platforms that they run on are far more diverse, have strict hardware depen-

dencies, are equipped peripherals that differ wildly between systems, and their execution

typically depends on external phenomena that materialize as hardware interrupts. The

depth of the analysis can be improved by developing novel hardware-based introspection

xiii

techniques, which would provide analysts with the ability to observe the internal state of

the real embedded system in real-world scenarios. The scale of the analysis can also be

improved by decoupling the firmware from the hardware through emulation techniques,

which would permit analysts to parallelize their analyses across numerous emulated sys-

tems, without the need for hardware, and also experiment with the embedded system

in a zero-risk virtual environment. I developed a novel hardware-based introspection

technique for embedded systems that provides real-time, high-level insights into modifi-

cations made to both volatile and non-volatile memory using a Field-Programmable Gate

Array (FPGA) implementation and novel semantic-gap reconstruction techniques. I also

developed an approach to support the decoupling of firmware from its hardware that can

use either hardware- or software-based instrumentation of the system to record the hard-

ware interactions on the real system and then convert these recordings into generalized,

composable ω-automata that can be used in place of the hardware for emulation.

Embedded systems are also difficult to protect against hardware-based attacks, espe-

cially glitching. Ideally, firmware could be protected against these attacks using software-

only techniques that could be deployed to the billions of existing systems to protect

them from physical attacks, without physically replacing them. I developed an approach

that permits embedded system developers to automatically inject various software-based

glitching defenses into their code at compile-time, producing glitch-resistant firmware

without the need for any code annotations or modifications to the embedded system’s

hardware.

xiv

Contents

Curriculum Vitae xi

Abstract xiii

1 Introduction 1
1.1 Permissions and Attributions . 6

2 The State of Embedded Systems Security 8

3 Low-Artifact Analysis Using Hardware Introspection 12
3.1 Introduction . 12
3.2 Background and Threat Model . 15
3.3 System Implementation . 18
3.4 Artifacts . 24
3.5 Limitations . 28
3.6 Experimental Framework . 30
3.7 Evaluation and Analysis . 34
3.8 Future Work . 49
3.9 Conclusion . 50

4 Enabling Full-system Emulation of Embedded Systems 54
4.1 Introduction . 54
4.2 Background . 57
4.3 System Design . 62
4.4 Evaluation . 75
4.5 Discussion and Future Work . 88
4.6 Conclusion . 89

5 Protecting Embedded Systems from Physical Attacks 91
5.1 Introduction . 91
5.2 Background . 95
5.3 Glitching Effects . 98

xv

5.4 Threat Model . 101
5.5 Glitching Effects in Emulation . 102
5.6 Real-world Glitching . 107
5.7 Glitching Defenses . 113
5.8 Evaluation of Defenses . 118
5.9 Conclusion . 124

6 Related Work 125
6.1 LO-PHI . 125
6.2 Conware . 127
6.3 GlitchResistor . 128

7 Future Research Directions 130
7.1 Continuous Introspection . 130
7.2 Unglitchable Hardware . 131
7.3 Automated Embedded System Emulation 132

8 Final Thoughts 134

Bibliography 135

xvi

Chapter 1

Introduction

I believe in a world where technology is used to enrich the human experience by alleviating

monotonous tasks and providing access to resources that allow us to optimize our limited

time on this earth. I have focused my research effort exclusively on topics that either

make the human experience better (e.g., easy-to-use security products) or help secure

the foundation that we are building our society on (i.e., fundamental changes to how we

design and build computing systems). My approach to research is straightforward. First,

I perform literature reviews and create tools to analyze existing systems to identify any

bugs or fundamental design flaws. Then, with the results of the analyses, I either facilitate

a fix for the current problem, if possible, or design a new system that is fundamentally

immune to previously identified flaws.

Embedded systems (i.e., single-purpose computers with tightly-coupled software and

hardware) have surpassed commodity laptops and personal computers as the most per-

vasive computing devices. Thus, to ensure the security of our computing infrastructure,

and the various activities that these systems perform, their security and reliability is crit-

ical. Currently, however; analyzing these systems is prohibitively difficult due to their

diversity (both in hardware and software) and the hardware dependencies that render a

1

Introduction Chapter 1

majority of the existing analysis techniques ineffective. Therefore, a majority of the de-

vices are on our worlds computing infrastructure are running unanalyzed software, which

are likely riddled with yet-to-be discovered vulnerabilities. The sheer number of embed-

ded devices connected to the Internet could spell disaster if they were used maliciously

(e.g., the Mirai botnet was used to cripple popular internet services for hours [1]).

This arms race, and the current state of security for embedded systems, has been seen

before. In fact, it almost exactly parallels the situation from a decade or two earlier with

malware on commodity computers. Researchers were ultimately able to subdue many of

the widespread threats by increasing their automated analysis capabilities (e.g., virtual

machines [2–5] static analysis [6–8], and fuzz testing [9–11]) to understand what the at-

tackers were doing, and deploying novel defenses to thwart them, e.g., stack canaries [12],

address space layout randomization (ASLR) [13], and control-flow integrity (CFI) tech-

niques [14]. While our current situation with embedded systems is certainly more difficult,

it is by no means intractable, and is even more serious, as the cyber-physical nature of

many of these systems escalates the threats from a digital annoyance to real-world threats

of physical damage or bodily harm. Thus, in my research, I have been examining tech-

niques to both analyze existing, already deployed, embedded systems, as well as creating

mechanisms to better defend the embedded systems of the future.

The difficulties associated with analyzing embedded systems stem from four factors:

1) their software is heavily dependent on their hardware (i.e., it expects specific hard-

ware responses), 2) the hardware and software are incredibly diverse, requiring signif-

icant upfront effort to adapt existing analysis techniques, 3) much of the software is

interrupt-driven, and 4) many embedded systems are built using non-traditional or cus-

tom instruction set architectures (ISAs). All of the challenges compound to create a

perfect storm of complexity, which hinders existing static and dynamic analysis tech-

niques. In an attempt to address this problem, there have been two prominent forms

2

Introduction Chapter 1

of analysis for embedded systems: hardware-in-the-loop techniques, where the hardware

is used either directly [15, 16] or as an oracle for hardware interactions [17–20]; and

emulation, or re-hosting, techniques, which aim to completely remove the hardware and

create a software-only environment for analysis [21–23]. In my research, we have con-

tributed significantly to both areas. We created an introspection system, Low-observable

Physical Host Instrumentation (LO-PHI) [24] that is capable of reading the memory and

monitoring hard disk interactions of a running system, without any software or hardware

modification, by using a custom-designed Field-Programmable Gate Array (FPGA) that

can perform Direct Memory Access (DMA) and interpose the serial advanced technol-

ogy attachment (SATA) interface (Chapter 3). To demonstrate the power of LO-PHI,

which can be used to introspection any system that uses peripheral component intercon-

nect (PCI), PCI express (PCIe) or SATA, we evaluated the most evasive software possible

— environment-aware, evasive malware. Evasive malware is specifically designed to de-

tect that it is being analyzed and defend itself accordingly. Thus, LO-PHI’s ability

to analyze such software definitively shows its ability to analyze any software on real

hardware.

While powerful, LO-PHI is limited to introspecting higher-end systems that have a

PCI or PCIe bus and use SATA-based storage, which excludes a majority of the Internet

of things (IoT) devices that are currently flooding market. To address these more ubiqui-

tous devices, we have developed a system, called Conware, for modeling and emulating

embedded hardware peripherals. Conware does this be first interacting with the real

peripheral on a similar platform and recording the low-level interactions. These record-

ings can then be modeled and used in emulation to enable scalable dynamic analysis,

without the need for any hardware (Chapter 4).

My ultimate goal, however, is not to simply highlight the inadequacies of our current

ecosystem, but to build a better future for our society. Indeed, I have focused a signifi-

3

Introduction Chapter 1

cant amount of my research effort on, what I believe to be, the biggest need in security,

usable authentication. To this end, we have developed a ubiquitous authentication solu-

tion, Single Device Authentication (SDA), which has undergone numerous user studies,

was successfully patented [25], and is the core technology of a company that I recently

founded, Allthenticate. To facilitate this effort, and my dream of a better tomorrow,

numerous technological advances were required. First, we wanted to make sure that the

smartphones that we would be deploying our credentials on, and using as our interface

with the users, are, in fact, secure. Thus, we performed an extensive study on the secu-

rity mechanisms in place on these devices [26], specifically TrustZone and the embedded

secure element (SE), which SDA uses to protect its credentials and interactions from ma-

licious software. During this analysis, we identified a few fundamental flaws [27], various

bugs [28, 29], and some technical shortcomings of the existing devices (e.g., developers

cannot easily leverage TrustZone on existing Apple and Android devices).

The goal of SDA is to authenticate to everything (including embedded devices, com-

modity computers, and web-based resources) in a distributed way. Thus, the security

of the embedded devices becomes just as important as the smartphones that they are

authenticating with. More precisely, many of the embedded devices in our authentication

ecosystem are responsible for physical, security-critical operations (e.g., unlocking a door

or starting a car) and must be protected from remote, software-based attacks. To protect

these critical interfaces, we developed Trust.IO [30], a TrustZone-based protection that

is capable of transparently protecting all physical interfaces with limited source code

modifications (i.e., the insertion of one function call and the implementation of a single

callback function).

The security of Trust.IO, SDA, and any secure computing system for that matter,

necessarily depends on an uncompromised boot process to ensure that all of the software-

and hardware-based security mechanisms are correctly initialized. In our current mobile

4

https://www.allthenticate.net

Introduction Chapter 1

and embedded world, where attackers frequently have physical access to the device, this

requirement becomes even more stringent, requiring both physical (e.g., anti-tamper) and

digital (e.g., signed code) deterrents. Even if all of these protections are implemented

ideally, there is still a class of attacks, known as hardware glitching, that is capable of

compromising a secure boot process [31–40]. These hardware-induced faults, or glitches,

are capable of strategically disrupting the physical state of the processor such that in-

structions can be effectively “skipped” or data manipulated in nefarious ways. Glitching

attacks have been used to compromise numerous commercial products (e.g., the XBOX

360 [34], Playstation 3 [35], Playstation Vita [36], and Nintendo Switch [37, 38]), and

enterprise Internet protocol (IP) phones [39]. Moreover, glitching has even been lever-

aged to bypass both Intel’s Software Guard Extension (SGX) protections [41] and ARM’s

TrustZone [42] and even extract hardware-embedded cryptographic keys [40]. Thus, I

have dedicated a significant amount of my research to both understanding and defend-

ing against these powerful attacks (Chapter 5). To facilitate our analysis, we created

a framework that is capable of analyzing glitching attacks using both emulation and

real hardware devices. We also analyzed the efficacy of various proposed and novel

defenses through the development of GlitchResistor, the first automated, software-

based glitching defense tool. We found that our software-only defenses were capable of

completely eliminating single-glitch attacks (i.e., attacks that only affect one clock cycle)

and reducing the success rate of multi-glitch attacks by more that 56×, with a detection

rate of over 99%. Indeed, this result is impressive since completely eliminating glitching

attacks in practice is impossible without hardware modifications.

Analysis of complex embedded systems execution on their original hardware is now

possible using LO-PHI, a novel hardware-based introspection technique, or in a fully

emulated environment using Conware, a novel record-and-replay technique that is ca-

pable of generating high-fidelity automata from low-level hardware recordings. Similarly,

5

Introduction Chapter 1

defending these critical systems against physical glitching attacks is now tractable and

quantifiable using GlitchResistor, a source code and compiler instrumentation tool

that enables both researchers and practitioners to easily create glitching-resistant code

for embedded systems. Yet, it is clear that securing any embedded systems is not possible

with software alone — embedded systems fundamentally rely on the hardware that they

run on, which must be leveraged for any effective defense or analysis. Hybrid security

defenses must be adopted where the hardware and software are both leveraged to fully

defend against attacks, either by integrating hardware-based security mechanisms into

the software (i.e., Trust.IO) or supplementing hardware-security features with novel

software defenses (i.e., GlitchResistor). Similarly, any analysis of embedded system

software must necessarily use the hardware, either by instrumenting it directly (i.e.,

LO-PHI) or by interacting with hardware to enable emulation and analysis in its absence

(i.e., Conware).

In my future work, I plan to explore every aspect of our embedded, ubiquitous com-

puting society that we are creating, and to continue developing new technologies where

they are needed (e.g., re-architecting hardware to eliminate memory corruption attacks,

designing usable security systems, and creating secure-by-design systems that require

no cooperation from users or developers). While the world may never be free of cyber

threats or undue technological burden, we can always strive to do better, and I plan to

use my research and my technical skills to help move our society in a positive direction.

1.1 Permissions and Attributions

1. The content of chapter 3 is the result of a collaboration with Hongyi Hu, Kevin

Leach, Brendon Chetwynd, Charles V. Wright, Joshua Hodosh, Ryan Whelan, Lee

Rossey, Doug Stetson, and John Wilkinson, and has previously appeared in the

6

Introduction Chapter 1

2016 edition of the Network and Distributed System Security Symposium.

2. The content of chapter 4 is the result of a collaboration with Aravind Machiry, Gra-

ham Foster, Colin Unger, Evan Blasband, Nilo Redini, Hamed Okhravi, Christo-

pher Kruegel, and Giovanni Vigna.

3. The content of chapter 5 is the result of a collaboration with Aravind Machiry,

Nathan Burow, Hamed Okhravi, Rick Housley, Zhongshu Gu, Hani Jamjoom,

Christopher Kruegel, and Giovanni Vigna, and is currently in submission to the

the 2020 edition of the Annual Computer Security Applications Conference.

7

Chapter 2

The State of Embedded Systems

Security

The field of computer science is currently undergoing a fundamental shift from personal

computers (e.g., laptop and desktop computers) being the pervasive computing device

to smaller, embedded systems (e.g., smart homes, computer-based automobiles, and

automated industrial infrastructure). This paradigm shift has brought with it a similar

shift in the computer security industry, both in what attackers are targeting and what

those attacks are capable of. Long gone are the days when malware was written by

ornery teenagers in their basements. The modern cyber security battlefield is filled with

nation-state actors that are capable of not only accessing data but also affecting physical

systems, potentially causing damage or bodily harm. For example, the proliferation of

internet-connected embedded systems has enabled attacks against automobiles [43, 44],

critical infrastructure [45,46], and medical devices [47–49]. The game has clearly changed.

Indeed, throughout my career, while the focus of my work has always revolved around

embedded systems, the applications of my research has shifted. While LO-PHI is capable

of analyzing any software, the research community at the time (only five years ago) was

8

The State of Embedded Systems Security Chapter 2

still focused on malware, and thus, LO-PHI’s efficacy was demonstrated on malware,

instead of a robot, for example. Nevertheless, here we are, less than a decade later, and

publications that focus solely on malware are almost non-existent — and justifiably so.

The threat of malware has been seriously diminished, facilitated by large-scale analysis,

which was enabled through emulation and automation, and novel defense techniques.

Unfortunately, embedded systems are now undergoing a similar cat and mouse game that

malware once faced: the attackers have the upper hand and every new defense only seems

to delay the next attack, but not fully prevent it. This is largely due to the inability to

analyze these critical systems efficiently. Currently, embedded systems analysis typically

entails significant manual effort by a human analysts and in most cases requires access

to the physical hardware itself. Attackers need only find one single vulnerability that

can exploits while defenders must find, and patch, all of the latent bugs — the cards are

stacked in the attackers favor.

Embedded systems are more difficult to both analyze and defend than traditional

computers because a few fundamental differences:

• They run on large variety of architectures (e.g., ARM, MIPS, PIC, or AVR) and, in

many cases, even have custom ISAs, which is contrary to the traditional computers

that are almost exclusively one of two architectures: x86 or ARM.

• Most embedded systems have strict hardware dependencies, which rarely used well-

defined software interfaces and are also frequently customized for the specific sys-

tem or application, whereas traditional systems use standard hardware abstraction

layers (HALs).

• The number of peripherals that embedded software interfaces with, and depend on,

is almost uncountable (e.g., sensors, motors, or communication interfaces) making

manually implementing all of them intractable, unlike traditional computers, which

9

The State of Embedded Systems Security Chapter 2

have only a few predictable peripherals (e.g., keyboard, mouse, screen, and hard

drive).

• Embedded code is typically written to be interrupt driven (i.e., external phenomena

decides which code is executing), which means that simply executing the code is

unlikely to yield any valuable insights, unlike malware, which is typically a self-

contained payload that will execute to completion without external input.

• Finally, attackers typically have physical access to embedded systems, which changes

the threat model significantly. Embedded systems need to be resistant again both

software attacks (e.g., network vulnerabilities) and physical attacks (e.g., hardware-

induced faults).

These differences are not trivial, and have created a particularly challenging environment

for security researchers. In fact, there is currently no system capable of analyzing em-

bedded systems in the general case, neither statically nor dynamically. Similarly, the

physical attack vector is not one that most software engineers are accustom to defending

against, and thus most of the embedded systems today are vulnerable to even simple

“glitching” attacks.

If there is any hope for defenders to get the upper hand, as they have with malware,

we must create efficient analysis systems and introduce defenses that fundamentally

mitigate the most important attacks. Therefore, my research, and this body of work,

is my attempt to address these critical needs and my hope is that it will help guide

future research so that we can create a future where attackers are the ones playing an

unbalanced game that is stacked against them.

Chapter 3 presents a hardware-introspection tool capable of performing low-artifact

analysis of any software using hardware introspection (i.e., the hardware is instrumented

to observe what the software is doing, without disturbing the actual software itself). This

10

The State of Embedded Systems Security Chapter 2

low-artifact, difficult-to-detect introspection is particularly valuable for hard-to-analyze

embedded systems, which may not have debugging enabled or may be prohibitively dif-

ficult to emulate.

Chapter 4 presents a method for automatically modeling and emulating hardware

peripherals to support emulation. The goal of this work was to enable scalable, large-

scale analysis of embedded firmware through virtualization (i.e., similar to what was

done with malware).

Chapter 5 provides valuable insights into the world of glitching attacks, where fact

and fiction have become increasingly conflated — attackers have made some outlandish

claims and numerous defenses have been proposed without any rigorous analysis into their

efficacy. Thus, we performed an array of experiments to separate theory from practice.

In the process, we created an open-source tool capable of automatically instrumenting

any software, at compile time, with software-only glitching defenses that we show to be

to highly effective at detecting glitching attacks in practice (i.e., over a 99% detection

rate).

11

Chapter 3

Low-Artifact Analysis Using

Hardware Introspection

3.1 Introduction

With the rapid advancement of malware, the capabilities of existing analysis tech-

niques have become obsolete. Tools that exist within the operating system or hypervisor

are prone to creating artifacts that are visible to the malicious code. Malware authors can

leverage these artifacts to conceal their true intentions by halting execution or potentially

subverting the analysis technique all together. Even with clever designs, there remains

no proven technique for developing low-artifact software-based analysis tools. Moreover,

recent work by Kirat et al. [16] showed that at least 5% of the malware analyzed in their

study employed anti-analysis techniques that successfully evade most existing analysis

tools. Subsequently, numerous systems have been developed that attempt to detect and

analyze these environment-aware malware (e.g., [50, 51]). Chen et al. [52] even provide

a taxonomy of anti-analysis techniques and mitigations commonly employed. However,

no bullet-proof solutions exist, and most existing solutions require continuous updating

12

Low-Artifact Analysis Using Hardware Introspection Chapter 3

as they rely on emulation frameworks.

To address these problems we present LO-PHI (Low-Observable Physical Host Instru-

mentation), a novel system capable of analyzing software executing on commercial-off-

the-shelf (COTS) bare-metal machines, without the need for any additional software on

the machines. LO-PHI permits accurate monitoring and analysis of live-running phys-

ical hosts in real-time, with a minimal addition of “plug-and-play” components to an

otherwise unmodified system under test (SUT). We have taken a two-pronged approach

that is capable of instrumenting machines with actual hardware, to minimize artifacts, or

with traditional software-based techniques utilizing hardware virtualization, to maximize

scale. This permits the tradeoff between transparency, scale, and cost when appropriate

as well as the potential for parallel analysis. Our architecture uses physical hardware and

software-based sensors to monitor a SUT’s memory, network, and disk activity as well

as actuate its keyboard, mouse, and power. The raw data collected from our sensors is

then processed with modified open source tools, i.e., Volatility [53] and Sleuthkit [54], to

bridge the semantic gap, i.e., convert raw data into human-readable, semantically rich,

output. Because LO-PHI is designed to collect raw low-level data, it is both operating

system and file system agnostic. Our framework can be easily extended to support new or

legacy operating systems and file systems as long as the hardware tap points are suitable

for data acquisition.

LO-PHI also necessitated the development of novel introspection techniques. While

numerous techniques exist for memory acquisition [55–57] of bare-metal systems, pas-

sively monitoring disk activity has only recently begun to be explored [58]. In this work

we present a hardware sensor capable of passively sniffing the disk activity of a live

machine while introducing minimal artifacts. Subsequently, we have also developed the

required modules for parsing and reconstructing the underlying serial advanced technol-

ogy attachment (SATA) protocol. All of the source code for LO-PHI is available under the

13

Low-Artifact Analysis Using Hardware Introspection Chapter 3

Berkeley Software Distribution (BSD) license at http://github.com/mit-ll/LO-PHI.

While the potential applications for LO-PHI are vast, we focus on our ability to

perform automated malware analysis on physical machines, and demonstrate its useful-

ness by showcasing the ability to analyze classes of malware that trivially evade existing

dynamic analysis techniques. We first briefly summarize the current state of dynamic

malware analysis to better highlight our contributions in Section 3.2. Next, we describe

the design and implementation of our system, including hardware sensors for memory

and disk capture as well as actuators for controlling and reverting a system under test

(SUT) in Section 3.3. We then attempt to quantify the exposed hardware artifacts of

our system Section 3.4 and some of our inherent limitations in Section 3.5. We discuss

the design of our automated binary analysis framework in Section 3.6 and present the

findings from our analysis of various malware samples in Section 3.7. Finally, we com-

pare LO-PHI to other related works in Section 6.1 and highlight areas that we feel are

rich for future work in Section 3.8.

In summary we claim to make the following contributions to the field of dynamic

analysis:

• Deployed and tested an extremely low-artifact, hardware-based, dynamic analysis

environment capable of analyzing malware that avoids traditional software-based

techniques

• Developed hardware capable of introspecting the communication between SATA

devices as well as asynchronous memory acquisition

• Wrote a module capable of reconstructing SATA frames into high-level disk sector

operations

• Modified open-source forensics tools to reconstruct file system and operating system

14

http://github.com/mit-ll/LO-PHI

Low-Artifact Analysis Using Hardware Introspection Chapter 3

states

• Constructed a framework, and accompanying infrastructure, for automating anal-

ysis of binaries on both physical and virtual machines

• Demonstrated the scalability of our system to execute and analyze thousands of

samples with comparable fidelity to traditional VM-based solutions

3.2 Background and Threat Model

In this section, we introduce the vocabulary and basic concepts surrounding the LO-

PHI system as well as the scope of our threat model.

Stealthy Malware Recent malware detection and analysis tools rely on virtualization,

emulation, and debugging tools. Unfortunately, these techniques are becoming obsolete

with the growing interest in stealthy malware. Malware is stealthy if it makes an effort

to hide its true behavior. This stealth can emerge in several ways.

First, malware can simply remain inactive in the presence of an analysis tool. Such

malware will use a series of platform-specific tests to determine if certain tools are in use.

If no tools are found, then the malware executes its malicious payload.

Second, malware may abort its host’s execution. For example, a sample may attempt

to execute an esoteric instruction that is not properly emulated by the tool being used.

In this case, attempting to emulate the instruction may lead to raising an unhandled

exception, crashing the program.

Third, malware may simply disable defenses or tools altogether. For instance, Olly-

Dbg would crash when attempting to emulate printf calls with a large number of ‘%s’

tokens. This type of malware may also infect kernel space and then disable defenses by

abusing its elevated privilege level.

15

Low-Artifact Analysis Using Hardware Introspection Chapter 3

Artifacts As mentioned above, stealthy malware evades detection by concluding whether

an analysis tool is being used to watch its execution. This means that there must be

some piece of evidence available to the malware that it uses to make this determination,

commonly known as the observer effect. This may be anything from execution time (e.g.,

debuggers make programs run more slowly) to I/O device names (e.g., if a device has a

name with ‘VMWare’ in it), to emulation idiosyncrasies (e.g., QEMU fails to set certain

flags when executing obscure corner-case instructions). We refer to these bits of evidence

as artifacts. LO-PHI seeks to make instrumentation and measurement of malware more

transparent by reducing or eliminating the presence of these artifacts.

Malware Analysis These stealth techniques have necessitated the development of in-

creasingly sophisticated techniques to analyze them. For benign or non-stealthy binaries,

numerous debuggers exist such as OllyDbg, Immunity, and gdb. These debuggers can

be trivially detected in most cases (e.g., by using the isDebuggerPresent() function).

These anti-analysis techniques led researchers to develop more transparent, security-

focused analysis frameworks using virtual machines, which generally work by hooking

system calls to provide an execution trace which can then be analyzed [4,5,59–62]. Sys-

tem call interposition has its own inherent problems [63] (e.g., performance overhead),

which led many researchers to decouple their analysis code even further from the exe-

cution path. Virtual-machine introspection (VMI) peeks at system state without any

direct interaction with the control flow of the program, thus mitigating much of the

performance overhead. VMI has prevailed as the dominant low-artifact technique and

has been used by numerous malware analysis systems [64–70]. Jain et al. [71] provide

an excellent overview of this area of research. However, introspection techniques have

very limited access to the semantic meaning of the data that they are acquiring, which

led to the development of numerous techniques for bridging this semantic gap in both

16

Low-Artifact Analysis Using Hardware Introspection Chapter 3

memory [53, 67, 72–74] and disk [54, 58, 75] accesses. All VM-based techniques thus far

have nevertheless been shown to reveal some detectable artifacts [52, 76–78] that could

still be used to subvert analysis [78,79].

Because the techniques used to bridge the semantic gap rely only on raw data and are

in no way tied to the method of acquisition, newer techniques further decouple the anal-

ysis code from the SUT by moving the analysis portion into system management mode

(SMM) mode, an isolated execution mode available on x86 processors, [57,80–82] or onto

a separate processor altogether [83–87]. Similarly, our work fueled the development of an

array of methods for acquiring a system’s memory and disk state, while introducing even

fewer artifacts. In decreasing order of artifacts, the most popular techniques for acquir-

ing memory use either specialized software [88,89] or hardware to exploit direct memory

access (DMA) over FireWire [55,90] or using a peripheral component interconnect (PCI)

card [56,91]. Molina et al. [86] used a PCI card to obtain an out-of-band method for ac-

cessing the hard disk. While a few techniques have been proposed to defeat introspection

and semantic-gap based approaches [92], they tend to be very fragile in practice and are

not likely to be widely deployed. With LO-PHI, we hope to help bridge the gap between

these low-artifact data acquisition methods and the semantically-rich emulated analysis

frameworks to provide similar output with far less overhead.

Threat Model While LO-PHI has an almost-complete view of the SUT, and intro-

duces very few artifacts, we still make a few necessary assumptions about the malware

that we are analyzing. Specifically, we assume that the malware can interact with the

SUT without restriction, but that any malicious modifications made to the system will

be visible either in main memory or on the disk drive. Malware capable of infecting

peripherals or other onboard chips are currently out of scope for our system. Similarly,

we assume that the malware in question is not actively trying to thwart semantic-gap

17

Low-Artifact Analysis Using Hardware Introspection Chapter 3

reconstruction or avoid our particular hardware through signature-based means. Finally,

we assume that our instrumentation was in place before the malicious code was executed,

to ensure that our exposed artifacts cannot be fingerprinted. That is, the malware has

no chance to analyze the SUT without LO-PHI in place, and thus cannot distinguish

our analysis system from a system without our instrumentation. Otherwise, we assume

that malware may employ any exploitation, anti-analysis, or anti-debugging techniques.

More precisely, LO-PHI is specifically designed to detect highly-sophisticated stealthy

malware.

3.3 System Implementation

LO-PHI leverages various sensors, actuators, and software analysis tools combined

into a simple and scalable framework. For the purpose of our framework we generally

define a sensor as any data collection component (e.g., memory, disk, or network) and an

actuator as any component which provides inputs for the system (e.g., power, keyboard,

or mouse). Our architecture allows for simple one-off experiments on a single target SUT

as well as much larger analyses running in parallel on multiple SUTs. The hardware

sensors support high-speed, low-artifact collection of various data from a SUT, such as

memory or disk activity. Similarly, we employ hardware actuators, which automatically

drive a SUT to set up and run experiments, as well as clean up afterwards. The software

analysis tools run on a separate analysis machine, capable of aggregating and analyzing

the collected data in real time.

In addition to the hardware, LO-PHI also supports traditional virtual-machine intro-

spection using software-based sensors and actuators within our framework. While the

major contribution of this paper is our hardware instrumentation, much of our frame-

work’s power stems from its duality. We have implemented all of our capabilities in both

18

Low-Artifact Analysis Using Hardware Introspection Chapter 3

virtual and physical environments within the same abstracted software interface written

in Python. This permits the development of tools that will seamlessly work in either

environment, physical or virtual, depending on their instantiation. For example, analysis

scripts need only implement high-level functionality (e.g., memory read(), power on(),

disk revert()), which our framework will execute appropriately for the given machine

type. Similarly, we devised a scripting language for keyboard and mouse actions, along

with an appropriate parser for each instantiation.

3.3.1 Physical Instrumentation

While much work has been done in instrumenting and introspecting virtual machines,

we are only aware of a few systems [15, 16, 93] that have had the goal of bare-metal

instrumentation. We feel that the lack of existing solutions is likely due to a lack of

motivation and the high barrier of entry, i.e., it is more costly in both human effort

and resources to instrument physical machines. In this work, we hope to highlight the

usefulness of these techniques and advance the state-of-the-art in malware analysis.

One of our major design goals was to create tools that could be utilized on a wide

range of existing commercial-off-the-shelf (COTS) hardware with minimal modification.

While implementations with fewer artifacts are possible with specialized hardware (e.g.,

memory interposers) or modifications of existing hardware (e.g., firmware modifications),

developing more robust sensors permits a wider range of potential analyses and helps

future-proof our techniques. For these reasons, we chose to focus on two major sources

of data for our physical sensors: main memory and disk activity. In particular, we

employed Xilinx field-programmable gate array (FPGA) boards to interface with both

the peripheral component interconnect express (PCIe) interface, for memory acquisition,

and the Serial ATA (SATA) interface, for disk introspection. All of our sensors and

19

Low-Artifact Analysis Using Hardware Introspection Chapter 3

actuators communicate over gigabit Ethernet via the user datagram protocol (UDP).

Memory (Physical)

Our memory sensor is implemented on a Xilinx ML507 development board. This

particular board has single-lane PCIe connector, which we utilize as an endpoint to read

the SUT’s memory using direct memory access (DMA). We instantiate the card as a bus

master by enabling the Bus Master Enable bit in the card’s configuration register. While

each peripheral is designated a distinct memory region for DMA, there were traditionally

no enforcement mechanisms to stop a peripheral from reading and writing arbitrary

memory locations. This method has been widely studied [56, 57, 94] and exploited [55,

94–99] over the years. Subsequently, PCIe can achieve very rapid polling rates, making

it an ideal candidate for reliable memory acquisition.

Disk (Physical)

We also employ the ML507 board for our disk analysis by using its two onboard

SATA connectors. An Intelliprop SATA bridge core (Part number: IPP-SA110A-BR)

provides the ability to passively monitor, and potentially manipulate, all of the traffic

over the SATA interface between the host and device. To receive this data on our remote

analysis host, we implemented the logic to package the SATA frames into UDP packets

and send them over the gigabit Ethernet connection. This proved a difficult engineering

feat, as the data rates of SATA exceed the capacity of our gigabit Ethernet link, and

thus necessitated numerous data-flow integrity guarantees. This interface is completely

passive and is essentially invisible to the SUT, aside from the occasional throttling of

frames.

20

Low-Artifact Analysis Using Hardware Introspection Chapter 3

Actuation (Physical)

For many of our intended applications, it is convenient, and sometimes necessary,

to actuate the SUT from our analysis scripts. For this purpose, we employ the Ar-

duino Leonardo, which is driven by a ATmega32u4. It has numerous general-purpose

input/ouput (GPIO) pins, as well as the ability easily emulate a keyboard and mouse

through the universal serial bus (USB) interface. We use an external power source for

the Arduino to permit functions such as powering on the SUT through the GPIO pins at-

tached to the SUT’s motherboard. Integrating the Leonardo into our software framework

was relatively straightforward, given the simplistic development environment provided for

Arduino platforms. That said, correctly emulating mouse movements required some ad-

ditional effort. However, once implemented, these mouse movements provide LO-PHI

with the capability to move the mouse as a human user would (e.g., continuously move

the mouse) and also click buttons presented by the software. While numerous commer-

cial solutions already exist for some of this instrumentation (e.g., Intelligent Platform

Management Interface, Active Management Technology, Dell Remote Access Card), we

wanted to ensure that LO-PHI would be usable on the widest-range of systems possible,

and thus opted for the lower-level interfaces, specifically USB.

Infrastructure (Physical)

While our sensors and actuators achieve all of our low-level requirements for instru-

mentation, numerous actuation functions (e.g., reverting the disk or checking the OS’s

boot status) required the development of specialized infrastructure. While reverting the

disk for a virtual machine is as easy as overwriting a file, reverting a physical machine

quickly becomes much more involved. Our requirement of unmodified hardware elimi-

nates options such as network booting or specialized drives, which would also produce

21

Low-Artifact Analysis Using Hardware Introspection Chapter 3

SSE MMX INTEGER FL-POINT
Memory Operation Type

4900

4950

5000

5050

5100

5150
M

em
or

y
Th

ro
ug

hp
ut

 (M
B/

se
c)

Uninstrumented With Instrumentation

(a) Physical machine (Polling at 14MB/sec)

SSE MMX INTEGER FL-POINT
Memory Operation Type

5000

6000

7000

8000

9000

10000

11000

M
em

or
y
Th
ro
ug
hp
ut
 (M

B/
se
c)

Uninstrumented With Instrumentation

(b) Virtual machine (Polling at 160MB/sec)

Figure 3.1: Average memory throughput comparison as reported by RAMSpeed, with
and without instrumentation on both physical and virtual machines. (500 samples for
each box plot)

significant detectable artifacts.

To achieve the desired outcome, we implemented our own preboot execute environ-

ment (PXE) server as well as an accompanying trivial file transfer protocol (TFTP)

server, dynamic host configuration protocol (DHCP) server and domain name service

(DNS) server. This enables us to temporarily permit a given media access control (MAC)

address to boot a Clonezilla [100] instance, which restores the disk to a previously saved

state. By doing this, we make our system more flexible and scalable as the hardware is

no longer tied to a particular operating system or installation configuration. Similarly,

by hosting our own DNS and DHCP server, we are able to simplify our scripts and cre-

ate a richer atmosphere for malware analysis (e.g., we can trivially lookup the IP of a

given machine since our infrastructure assigns it). We also use gigabit Netgear GS108T

switches, one per physical machine, and utilize virtual local-area networks (VLANs) to

ensure that our control and sensor traffic do not interfere with each other.

22

Low-Artifact Analysis Using Hardware Introspection Chapter 3

3.3.2 Virtual Instrumentation

Since a great deal of work has already been done using virtual-machine introspection

(VMI), we choose to leverage existing capabilities when possible by simply incorporating

them into our software framework with minimal amounts of glue code. Because of our

desire to use existing solutions, and source code availability, we chose to use open-source

hypervisor implementations, namely QEMU/KVM [101,102].

Memory (Virtual)

For live memory acquisition, we use techniques similar to those employed by Lib-

VMI [103]. We obtain access to the guest’s physical memory by means of a UNIX

socket. This socket then permits arbitrary memory read and write commands, which

perform the appropriate action on the guest’s memory using cpu physical memory map

and cpu physical memory unmap.

Disk (Virtual)

To incorporate disk introspection into our virtual environment, we inserted hooks into

the QEMU block driver. These hooks intercept all disk operations and copy the relevant

data to a separate thread, which then exports them over a UNIX socket to a subscription

sever. By spawning a new thread for every access, we should have negligible impact on the

system performance, especially if the host system has underutilized resources. The server

then allows our clients to connect and subscribe to the disk activity of any guest. We

also ensured that our implementation works properly with copy-on-write disks, greatly

increasing performance when an experiment requires frequently resetting the disk state.

23

Low-Artifact Analysis Using Hardware Introspection Chapter 3

Actuation (Virtual)

For actuation, we leverage libvirt [104], an open-source tool for interacting with hy-

pervisors. Again, mouse movement proved to be less straightforward, and necessitated

the development of a custom virtual network computing (VNC) client.

3.4 Artifacts

While hardware-level introspection provides numerous desirable security guarantees

that are not available for software-based solutions (e.g., hardware segregation of analysis

code), it is still critically important to introduce minimal artifacts and, in the ideal case,

none at all. We emphasize that the artifacts produced by LO-PHI are likely unusable

by malware for subversion, because the malware would lack a baseline for comparison.

Minimizing artifacts not only improves the fidelity of our data and the performance of

our system, but also reduces the number of “tells” on a SUT that can be used to evade

or hinder our analysis. Nevertheless, we enumerate the artifacts introduced by our in-

strumentation and attempt to address any shortcomings in both virtual and physical

machines. All of our experiments were run using our infrastructure to automate the exe-

cution of our benchmarking applications on both physical and virtual machines both with

and without instrumentation. In our performance experiments, the physical SUT was a

Dell T7500 equipped with an 6-core Xeon X5670 and 2GB of RAM and a WD3200AAKX

disk drive, and our virtual machine was instantiated on a Dell T7600 equipped with dual

8-core Xeon E5-2665 processors and 68GB of RAM, with the VM itself allocated one

core, 1GB of RAM and a 10GB hard disk.

24

Low-Artifact Analysis Using Hardware Introspection Chapter 3

3.4.1 Memory Artifacts

In both of our memory-introspection techniques, i.e., physical and virtual, there is

likely to be a performance impact on the SUT, as we are accessing a shared resource (main

memory). We attempted to quantify this performance impact by utilizing RAMSpeed,

a popular RAM benchmarking application. We ran RAMSpeed on the same system

with and without our instrumentation. In each case, we conducted four experiments

designed to stress each of the INT, MMX, SSE, and FL-POINT instruction sets. Each

of these experiments consists of 500 sub-experiments, which evaluate and average the

performance of copy, scale, sum, and triad operations. To ensure that the memory reads

for our instrumentation were not being cached, we had our sensors continuously read

the entire memory space, which should have also introduced the largest performance

impact on the system. The memory polling rates were dictated by the hardware and our

particular implementation.

At first glance, Figure 3.1 may seem to indicate that our instrumentation has a dis-

cernible effect on the system; however, the deviation from the uninstrumented median

is only 0.4% in the worst case (SSE in Figure 3.1a). Despite our best efforts to create

a controlled experiment, i.e., running RAMSpeed on a fresh install of Windows with no

other processes, we were unable to to definitively attribute any deviation to our polling

of memory. While our memory instrumentation certainly has some impact on the sys-

tem, the rates at which we are polling memory do not appear to be frequent enough to

predictably degrade performance. This result appears to indicate that systems like ours

could poll at significantly higher rates while still remaining undetectable. For example,

PCIe implementations can achieve DMA read speeds of 3 GB/sec [105], which could per-

mit a new class entirely of introspection capabilities. To this end, we have successfully

achieved rates as fast as 60 MB/sec using SLOTSCREAMER [106]; however, the imple-

25

Low-Artifact Analysis Using Hardware Introspection Chapter 3

16 32 64 128 256 512 1024 2048
File Size (MB)

65

70

75

80

85

90

95
Di
sk
 T
hr
ou
gh
pu
t (
M
B/
se
c)

Uninstrumented With Instrumentation

(a) File writes

16 32 64 128 256 512 1024 2048
File Size (MB)

0

500

1000

1500

2000

2500

Di
sk
 T
hr
ou

gh
pu

t (
M
B/
se
c)

Uninstrumented With Instrumentation

(b) File reads

Figure 3.2: File system throughput comparison as reported by IOZone on Windows
XP, with and without instrumentation on a physical machine. (50 samples for each
box plot)

mentation is not yet stable enough to incorporate into our framework. Nevertheless, in

order to detect any deviation in performance, the software being analyzed would need to

have the ability to baseline our system, which is not feasible in our experiments.

While performance concerns are a universal problem with instrumentation, adding

hardware to a physical configuration has numerous additional artifacts that must also be

addressed. To utilize PCIe, we must enumerate our card on the bus, which means that

the BIOS and operating system are able to see our hardware. This inevitably reveals

our presence on the machine; nevertheless, mitigations do exist (e.g., masquerading as

a different device). To avoid detection, our card could trivially use a different hardware

identifier every time to avoid signature-based detection. Even with a masked hardware

identifier however, Stewin et al. [107] demonstrated that all of these DMA-based ap-

proaches will reveal some artifacts that are exposed in the CPU performance counters.

Similar techniques could be employed by malware authors in both physical and virtual

environments to detect the presence of a polling-based memory acquisition system such

as ours. These anti-analysis techniques could necessitate the need for more sophisticated

acquisition techniques, some of which are proposed in Section 3.8.

26

Low-Artifact Analysis Using Hardware Introspection Chapter 3

3.4.2 Disk Artifacts

To quantify the performance impact of our disk instrumentation, we similarly em-

ployed a popular disk benchmarking utility, IOZone [108]. While IOZone’s primary

purpose is to benchmark the higher-level filesystem, any performance impacts on disk

throughput should nonetheless be visible to the tool. We used the same setup as the

previous memory experiments and ran IOZone 50 times for each case, i.e., with and

without our instrumentation, monitoring the read and write throughput with a record

size of 16MB and file sizes ranging from 16MB to 2GB (the total amount of RAM on

SUT).

Our hardware should only be visible when we intentionally delay SATA frames to meet

the constraints of our gigabit Ethernet link. We designed the system with this delay to

minimize our packet loss since UDP does not guarantee delivery of packets. In practice,

we rarely observed the system cross this threshold; however, IOZone is explicitly made

to stress the limits of a file system. For smaller files, caching masks most of our impact

as these cache hits limit the accesses that actually reach the disk. The caching effect

is more prevalent when looking at the raw data rates (e.g., the median uninstrumented

read rate was 2.2GB/sec for the 16MB experiment and 46.2MB/sec for 2GB case).

The discrepancies between the read and write distributions are attributed to the

underlying New Technology File System (NTFS) and optimizations in the hard drive

firmware. Figure 3.2b shows that our instrumentation is essentially indistinguishable

from the base case when reading, the worst case being a degradation of 3.7% for 2GB files.

With writes however, where caching offers no benefit, the effects of our instrumentation

are clearly visible, with a maximum performance degradation of 14.5%. Under typical

operating conditions, throughputs that reveal our degradation are quite rare. In these

experiments, the UDP data rates observed from our sensor averaged 2.4MB/sec with

27

Low-Artifact Analysis Using Hardware Introspection Chapter 3

burst speeds reaching as high as 82.5MB/sec, which directly coincide with the rates

observed in Figure 3.2a, confirming that we are only visible when throttling SATA to

meet the constraints of the Ethernet connection.

In the case of virtual machines, we would expect to have no detectable artifacts on

a properly provisioned host aside from the presence of a kernel virtual machine (KVM).

This is because our instrumentation adds very little code into the execution path for disk

accesses, and uses threading to exploit the numerous cores on our system. More precisely,

our instrumentation only adds a memory copy operation of the data buffer, which is then

passed to a thread to be exported. Our experimental results confirmed this hypothesis

as we were unable to identify any consistent artifacts in our IOZone tests.

3.5 Limitations

All of our techniques have some inherent limitations. We attempt to enumerate the

most prominent of those below.

Input/Output Memory Management Unit (IOMMU) Newer chipsets are equipped

with IOMMUs, which, when properly configured to disable DMA from peripherals, would

render our current memory acquisition approach ineffective. While this limits us from

instrumenting arbitrary systems, it does not thwart our approach in the analysis case,

i.e., where we have complete control of the system that we are instrumenting, because

we could simply disable this functionality or purchase chipsets that do not contain IOM-

MUs. In the long term however, we will likely have to migrate our techniques to employ

a different memory acquisition method.

Asynchronous Memory Access Wang et al. [109] provide a good analysis of the

inherent limitations of polling-based systems for malware detection and potential evasion

28

Low-Artifact Analysis Using Hardware Introspection Chapter 3

techniques. However, memory polling may also create issues with smearing and caching

as well. Smearing occurs when the state of memory of a SUT changes during acquisition,

resulting in an imperfect memory capture over a time window rather than a specific

instant in time. The memory contents of live SUTs are very dynamic, so smearing is

likely to occur. Nevertheless, we have only rarely had this effect cause problems in

practice, and faster polling rates would help minimize the smearing effect. Similarly,

there may be rare cases where data never leaves a cache; however, this can be easily

mitigated with cache coherency.

Filesystem Caching For disk monitoring, OS-level disk caching may cause our disk

sensor to miss SATA frames that hit the cache and are overwritten before being flushed

to disk. While this effect is likely to be minor during continuous disk monitoring, it is

conceivable that malware could drop a file, execute it, and delete it before the cache

is ever flushed to disk, completely evading detection. However, we do not see this as a

major issue, as attempts of persistence will eventually have to write to disk. Additionally,

the effects of the malware would also likely be detectable in memory.

No Internet Access Our experiments also had a few limitations that were beyond our

control. For example, the network policies within our organization currently forbid us

from running these malware samples on the live Internet. Similar studies have concluded

that most malware from the wild will appear to do nothing, aside from network activity,

without the presence of its command-and-control infrastructure from which to retrieve a

payload. Because of this, we do not present our results as representative of the presence

of VM-aware malware in the wild, but instead highlight our capabilities and the ability

to detect particularly sophisticated payloads once they are executed.

29

Low-Artifact Analysis Using Hardware Introspection Chapter 3

3.6 Experimental Framework

To facilitate experimentation, we built a scalable infrastructure capable of running

arbitrary binaries on either a physical or virtual machine with a specified operating

system. Our software infrastructure consists of a master which accepts job submissions

and delegates them to an appropriate controller. A given controller is initialized with

a set of machines, both physical and virtual SUTs, that serve as its worker pool. Upon

a job submission, the controller first downloads the script, which describes the actions

to perform on the SUT, and submits the job to a scheduler. This scheduler then waits

for a machine of the appropriate type, i.e., physical or virtual, to become available

in the pool, allocates it to the analysis, and runs the requested routines. All of our

malware samples, analyses, and results were stored in a MongoDB database. Samples

were submitted using a custom FTP server and a command line tool that interfaced with

the master to instantiate a given analysis script, which are stored on the master and

dynamically sent to the controller.

Because of the duality of our framework we were able to write one simple script

(see Figure 3.3) that will: 1) reset our machine to a clean state, 2) take a memory

image before and after execution, 3) attempt to click any graphical buttons, 4) capture

screenshots, and 5) capture all disk and network activity throughout the execution. To

download and execute an arbitrary binary (Figure 3.3, line 12), our implementation

uses hotkeys to open a command line interface, executes a recursive file-transfer protocol

(FTP) download to retrieve the files to be analyzed, and then runs a batch file to execute

the binary. From this data, we reconstruct the changes in system memory, in addition

to a complete capture of disk and network activity generated by the binary. To identify

any graphical buttons that the malware may present, we use the Volatility “windows”

module to identify all visible windows that have an atom class of 0xc061 or an atom

30

Low-Artifact Analysis Using Hardware Introspection Chapter 3

1 # Reset our d i s k us ing PXE
2 machine . mach ine re se t ()
3 machine . power on ()
4 # Wait f o r OS to appear on network
5 while not machine . n e twork ge t s t a tu s () :
6 time . s l e e p (1)
7 # Allow time fo r OS to cont inue load ing
8 time . s l e e p (OS BOOT WAIT)
9 # Star t d i s k capture

10 d i sk tap . s t a r t ()
11 # Send key pre s s e s to download binary
12 machine . keypre s s s end (f t p s c r i p t)
13 # Dump memory (c lean)
14 machine . memory dump(memory f i l e c l e an)
15 # Star t c o l l e c t i o n network t r a f f i c
16 network tap . s t a r t ()
17 # Get a l i s t o f current v i s i b l e bu t tons
18 b u t t o n c l i c k e r . update buttons ()
19 # Star t our b inary and c l i c k any bu t tons
20 machine . keypre s s s end ('SPECIAL :RETURN ')
21 # Move our mouse to im i t a t e a human
22 machine . mouse wiggle (True)
23 # Allow binary to execute (I n i t i a l)
24 time . s l e e p (MALWARE START TIME)
25 # Dump memory (inter im)
26 machine . memory dump(memory f i l e i n t e r im)
27 # Take a screensho t (Before c l i c k i n g bu t tons)
28 machine . s c r e en sho t (s c r e en sho t one)
29 # Cl ick any new but tons t ha t appeared
30 b u t t o n c l i c k e r . c l i c k b u t t o n s (new only=True)
31 # Allow binary to execute (3 min t o t a l)
32 time . s l e e p (MALWARE EXECUTION TIME−e l apsed t ime)
33 # Take a f i n a l s c reensho t
34 machine . s c r e en sho t (s c r eenshot two)
35 # Dump memory (Dirty)
36 machine . memory dump(m e m o r y f i l e d i r t y)
37 # Shutdown Machine
38 machine . power shutdown ()

Figure 3.3: Python script for running a malware sample and collecting the appropriate
raw data for analysis.

superclass of 0xc017, which indicate a button, and then use our actuator to move the

mouse to the appropriate location and click it. Our analysis framework also attempts to

remove any typical analysis-based artifacts by using a random file name and continuously

moving the mouse during the execution of the binary. Similarly, when possible, i.e., the

system is not hung, we also properly shutdown the system at the end of the analysis to

force any cached disk activity to be flushed.

In our analysis setup, both the physical and virtual environments had a 10 GB par-

tition for the operating system and 1 GB of volatile memory. The operating system

31

Low-Artifact Analysis Using Hardware Introspection Chapter 3

0 2 4 6 8 10 12 14 16 18 20 22

Ph
ys
ic
al
 A
na

ly
si
s Disk Reset

OS Boot
OS Stabilize

Key Presses
Mem. (Clean)

Compress (Clean)
Buttons (Clean)

Binary Executed
Mem. (Interim)
Screenshot (Interim)
Buttons (Click)
Extra Sleep

Mem. (Dirty)
Screenshot (Final)

Compress (Dirty)
Shutdown
Store Results

0 1 2 3 4 5 6 7 8 9
Time Elapsed (Minutes)

Vi
rt
ua

l A
na

ly
si
s

Disk Reset
OS Boot

OS Stabilize
Key Presses

Mem. (Clean)
Compress (Clean)

Buttons (Clean)

Binary Executed
Mem. (Interim)
Screenshot (Interim)
Buttons (Click)

Extra Sleep
Mem. (Dirty)
Screenshot (Final)

Compress (Dirty)
Shutdown

Store Results

Figure 3.4: Time spent in each step of binary analysis. Both environments were
booting a 10 GB Windows 7 (64-bit) hibernate image and were running on a system
with 1 GB of volatile memory.

was placed into a “hibernate” state to minimize the variance between executions and

also reduce the time required to boot the system. To minimize the space requirements

of our system, we compress our memory images before storing them in our databases.

While this adds a significant amount of time to our analysis (approximately 2 minutes),

it significantly reduces the storage requirement. Finally, the virtual machine’s networks

were logically divided to ensure that samples did not interfere with each other, and the

physical environment consisted of only one machine.

The respective runtimes for each portion of our analysis can be seen in Figure 3.4.

We ensured that every binary executed for at least 3 minutes before retrieving our final

memory image and resetting the system. Screenshots were obtained using Volatility’s

32

Low-Artifact Analysis Using Hardware Introspection Chapter 3

Raw SATA
Capture

Disk Reconstruction
(Custom Module)

File System Reconstruction
(PyTSK + Custom Code) Filter Noise FS Modifications

(a) Disk Reconstruction

Memory Image
(Clean)

Semantic Reconstruction
(Volatility) OS Information

Memory Image
(Dirty)

Semantic Reconstruction
(Volatility) OS Information

Extract
Differences

Filter Noise
Memory

Modifications

(b) Memory Reconstruction

Figure 3.5: Binary analysis workflow. (Rounded nodes represent data and rectangles
represent data manipulation.)

screenshot module on physical machines and were extracted from the captured memory

images. Note that most of the time taken in the physical case is due to our resetting of the

system state using Clonezilla, waiting for the system to boot, and memory acquisition.

The resetting and boot process could be decreased significantly by writing a custom

PXE loader, or completely mitigated by implementing copy-on-write into our FPGA.

Similarly, the memory acquisition times could be more comparable to the virtual case,

if not faster, by optimizing our PCIe implementation. Finally, system snapshots could

reduce the time spent setting up the environment to mere seconds. While snapshots are

trivial with virtual machines, it is still an open problem for physical machines.

We note that LO-PHI may miss any temporal memory modifications made by the

binary between our clean and dirty memory images. To analyze the transient behavior

of a binary, LO-PHI could be used to continuously poll the systems memory during

execution. However, while this has the potential to produce a lot more fidelity, we do

not feel that our current polling rates are fast enough to warrant the tradeoff between

the produced DMA artifacts and usefulness of the output. We hope to explore this area

of research in more detail in the future as we improve our memory capture capabilities.

33

Low-Artifact Analysis Using Hardware Introspection Chapter 3

3.7 Evaluation and Analysis

In this section, we explain our methodology for semantic gap reconstruction (Section 3.7.1)

and demonstrate the practicality of LO-PHI with three targeted experiments. The ex-

periments were constructed to demonstrate the following:

• The ability of LO-PHI to detect the behaviors elicited by real malware, confirmed

with ground truth (Section 3.7.3)

• The ability to scale and extract meaningful results from unknown malware samples

(Section 3.7.4)

• The ability to analyze malware samples that employ anti-analysis and evasion tech-

niques (Section 3.7.5)

For each binary, we determine the system changes that occurred during execution by

forensically comparing the resulting clean and dirty states. Each such pair of datasets

contains a clean and a dirty raw memory snapshot respectively as well as a log of raw

disk and network activity that occurred between clean and dirty states. We exclude the

network trace analysis from much of our discussion since it is a well-known technique

and not the focus of our work. Our analysis of a binary’s execution involves four steps:

1) bridging the semantic gap for both the clean and dirty states, 2) computing the delta

between the two states, 3) filtering out actions that are not attributed to the binary,

and 4) comparing the delta for physical execution and virtual execution to determine if

the sample employs VM-detection techniques (if applicable). The process taken for each

binary is illustrated Figure 3.5. When appropriate, we also compare our results to those

produce by Anubis [5] and Cuckoo Sandbox [3].

34

Low-Artifact Analysis Using Hardware Introspection Chapter 3

Offset Name PID PPID
0x86292438 AcroRd32.exe 1340 1048
0x86458818 AcroRd32.exe 1048 1008
0x86282be0 AdobeARM.exe 1480 1048
0x864562a0 $$ rk sketchy server.exe 1044 1008

(a) New Processes (pslist)

PID Port Protocol Address
1048 1038 UDP 127.0.0.1
1044 21 TCP 0.0.0.0

(b) New Sockets (sockets)

Selector Base Limit Type DPL Gr Pr
0x320 0x8003b6da 0x00000000 CallGate32 3 - P

(c) GDT Hooks (gdt)

Name Base Size File
hookssdt.sys 0xf7c5b000 0x1000 C: \. . . \lophi\hookssdt.sys

(d) Loaded Kernel Models (modscan)

Table Entry Index Address Name Module
0 0x0000f7 0xf7c5b406 NtSetValueKey hookssdt.sys
0 0x0000ad 0xf7c5b44c NtQuerySystemInformation hookssdt.sys
0 0x000091 0xf7c5b554 NtQueryDirectoryFile hookssdt.sys

(e) SSDT Hooks (ssdt)

Created Filename
/. . . /lophi/$$ rk sketchy server.exe
/. . . /lophi/hookssdt.sys
/. . . /lophi/sample 0742475e94904c41de1397af5c53dff8e.exe

(f) Disk Event Log (81 Entries Truncated)

Figure 3.6: Post-filtered semantic output from rootkit experiment (Section 3.7.3).

3.7.1 Semantic Gap Reconstruction

As previously mentioned, before any analysis can be conducted, we must first bridge

the semantic gap, i.e., translate our memory snapshots and SATA captures, which contain

low-level, raw, data into high-level, semantically-rich, information.

35

Low-Artifact Analysis Using Hardware Introspection Chapter 3

Memory

To extract operating-system-level modifications from our memory captures, we run a

number of Volatility plugins on both clean and dirty memory snapshots to parse kernel

structures and other objects. Some of the general purpose plugins include psscan, ldr-

modules, modscan, and sockets, which extract the running processes, loaded dlls, kernel

drivers, and open sockets resident in memory. Similarly, we also run more malware-

focused plugins such as idt, gdt, ssdt, svcscan, and callbacks which examine kernel de-

scriptor tables, registered services, and kernel callbacks.

Disk

The first step in our disk analysis is to first convert the raw capture of the SATA

activity into a 4-tuple containing the disk operation (e.g., READ or WRITE), start-

ing sector, total number of sectors, and data. Our physical drives, as with most mod-

ern drives, used an optimization in the SATA specification known as Native Command

Queuing (NCQ) [110]. NCQ reorders SATA Frame Information Structure (FIS) requests

to achieve better performance by reducing extraneous head movement and then asyn-

chronously replies based on the optimal path. Thus, to reconstruct the disk activity,

our SATA reconstruction module must faithfully model the SATA protocol in order to

track and restore the semantic ordering of FIS packets before translating them to disk

operations. Upon reconstructing the disk operations, these read/write transactions are

then translated into disk events (e.g., filesystem operations, Master Boot Record modi-

fication, slack space modification) using our analysis code which is built upon Sleuthkit

and PyTSK [111]. Since Sleuthkit only operates on static disk images, our module re-

quired numerous modifications to keep system state while processing a stream of disk

operations. Intuitively, we build a model of our SUT’s disk drive and step through each

36

Low-Artifact Analysis Using Hardware Introspection Chapter 3

read and write transaction, updating the state at each iteration and reporting appropri-

ately. This entire process is visualized in Figure 3.5a. Unlike previous work [58], which

was designed for NTFS, our approach is generalizable to any filesystem supported by

Sleuthkit. A sample output from creating the file LO-PHI.txt on the desktop can be seen

below:

MFT modification (Sector: 6321319)

Filename /WINDOWS/. . . /drivetable.txt→/. . . /Desktop/New Text Document.txt
Allocated 0 → 1 Unallocated 1 → 0 Size 132 → 0
Modified 2014-11-07 20:07:06 (1406250) → 2015-02-19 15:47:17 (3281250)
Accessed 2014-11-07 20:07:06 (1406250) → 2015-02-19 15:47:17 (3281250)
Changed 2014-11-07 20:07:06 (1406250) → 2015-02-19 15:47:17 (3281250)
Created 2014-11-07 20:07:06 (1406250) → 2015-02-19 15:47:17 (3281250)

. . .
MFT modification (Sector: 6321319)

Filename /. . . /Desktop/New Text Document.txt →/. . . /Desktop/LO-PHI.txt
Changed 2015-02-19 15:47:17 (3281250) → 2015-02-19 15:47:25 (3437500)

Note that we can infer from this output that the filesystem reused an old MFT entry

for drivetable.txt and updated the filename, allocation flags, size, and timestamps upon

file creation. A subsequent filename and timestamp update were then observed once the

new filename, LO-PHI.txt, was entered.

3.7.2 Filtering Background Noise

While the ability to provide a complete log of modifications to the entire system

is useful in its own right, it is likely more relevant to extract only those events that

are attributed to the binary in question. To filter out the activity not attributed to a

sample’s execution, we first build a controlled baseline for both our physical and virtual

SUTs by creating a dataset (10 independent executions in our case) using a benign binary

(rundll32.exe with no arguments). We then use our analysis framework to extract all of

the system events for those trials and created a filter based on the events that frequently

37

Low-Artifact Analysis Using Hardware Introspection Chapter 3

occurred in this benign dataset. Two of our memory analysis modules, i.e., filescan and

timers, had particularly high false positives and proved less useful for our automated

analysis. To reduce false positives in our disk analysis, we decouple the filenames from

their respective master file table (MFT) record number.

3.7.3 Experiment 1: High-fidelity Output

To verify that LO-PHI is, in fact, capable of extracting behaviors of malware, we first

evaluated our system with known malware samples, for which we have ground truth.

In our first case study, we evaluated a rootkit that we developed utilizing techniques

from The Rootkit Arsenal [112] (Section 3.7.3). Similarly, we were able to obtain a

set of 213 malware samples that were constructed in a cleanroom environment, and

were accompanied by their source code with detailed annotations. All the binaries in

this experiment were executed on both physical and virtual machines that were running

Windows XP (32bit, Service Pack 3) as their operating system.

Homemade Rootkit

Our rootkit stealths itself by adding hooks to the Windows Global Descriptor Table

(GDT) and System Service Dispatch Table (SSDT) that will hide any directory or running

executable with the prefix $$ rk and then opens a malicious FTP server. The rootkit

module is embedded inside a malicious PDF file that drops and loads a malicious driver

file (hookssdt.sys) and the FTP server executable ($$ rk sketchy server.exe). Figure 3.6

shows the complete post-filtered results obtained when running this rootkit through our

framework. Note that we received identical results for both virtual and physical machines,

which exactly matches what we would expect given our ground truth. We clearly see our

rootkit drop the files to disk (Figure 3.6f), load the kernel model (Figure 3.6d), hook

38

Low-Artifact Analysis Using Hardware Introspection Chapter 3

the kernel (Figure 3.6e and Figure 3.6c), and then execute our FTP server (Figure 3.6a

and Figure 3.6b). We have omitted the creation of numerous temporary files by Adobe

Acrobat Reader and Windows as well as accesses to existing files (81 total events) in

Figure 3.6f to save space, however all disk activity was successfully reconstructed. Note

that we can trivially detect the presence of the new process as we are examining physical

memory and are not foiled by execution-level hooks.

We also ran our rootkit on the Anubis and Cuckoo analysis frameworks. Anubis

failed to execute the binary, likely due to the lack of Acrobat Reader or some other

dependencies. Cuckoo produced an analysis with very similar file-system-level output

to ours, reporting 156 file events, compared to our 81 post filtered. However, we were

unable to find our listening socket, or our GDT and SSDT hooks from analyzing their

output. While our FTP server was definitely executed, and thus created a listening

socket on port 21, it is possible that our kernel module may not have executed properly

on their analysis framework. Nevertheless, we feel that our ability to introspect memory

to find these obvious tells of malware, is a notable distinction. Subsequently, the lack of

execution for such a simple rootkit also emphasizes the importance of having a realistic

software environment as well as a hardware environment. We attempt to address this

issue for our analysis in Section 3.7.5.

Labeled Malware

For the analysis of our 213 well-annotated malware samples, we first performed a

blind analysis, and then later verified our findings with the labels. Note that there were

samples that exhibited more behaviors than those listed here, only the most interesting

findings are shown.

39

Low-Artifact Analysis Using Hardware Introspection Chapter 3

VM-detection We found that 66 of these samples were labeled as employing either

anti-VM or anti-debugging capabilities. However, none of the 66 anti-VM samples per-

formed QEMU-KVM detection; instead they focused on VMWare, VirtualPC, and other

virtualization suites. As expected, all of the samples executed their full payload in both

our virtual and physical analysis environments.

New Processes We found that 79 of the samples created new long-running processes

detected by our memory analysis. The most commonly created process was named sv-

chost.exe, which occurred in 15 samples. In addition, 2 other samples had variations

of svchost.exe, i.e., dddsvchost.exe and cbasvchost.exe. These 17 samples dropped their

own svchost.exe binary to disk, which was detected by our filesystem analysis, and ex-

ecuted the binary, which opened up a TCP listening socket on port 1053. Port 1053

is associated with the “Remote Assistance” service by the Internet Assigned Numbers

Authority (IANA). The second most common process was named bot.exe and occurred

in 12 samples, and 4 of these 12 samples also had the third most common process, which

was named dwwin.exe. The dwwin.exe binary claimed to be Dr. Watson, a debugger in-

cluded in Windows, but also appeared to be injected with malicious code. The 4 samples

each created 2 UDP listening sockets on ports 1045 and 1046, one owned by bot.exe and

the other owned by dwwin.exe respectively. We inferred from this behavior that these

two groups of samples were derived from the same two malware families and contained

remote administration tools (RATs), which we confirmed with the ground truth labels.

We also found 3 samples that executed the SUT’s legitimate firefox.exe browser, but

loaded with a suspicious library needful.dll that they dropped to disk. The firefox.exe

process opened TCP listening sockets on ports 1044 and 1045 in 2 of the 3 samples,

suggesting that these samples were also RATs attempting to masquerade as the Firefox

browser. This supposition was also confirmed by the ground truth data.

40

Low-Artifact Analysis Using Hardware Introspection Chapter 3

Data Exfiltration We successfully detected 46 samples that attempted to collect and

exfiltrate data through a combination of our disk and memory analysis. We initially

flagged 2 particular samples because they appeared to be exfiltrating data over external

IPs over port 25, which is reserved for the Simple Mail Transfer Protocol (SMTP). Our

disk analysis of these samples showed a number of suspicious file reads, including reads

of Firefox’s cert8.db and key3.db for all user profiles stored on the SUT. These files store

user installed certificates and saved passwords respectively, and there were no Firefox

processes running during the execution of those samples. Searching for similar suspicious

disk behavior in the rest of the labeled set yielded 44 additional samples that appeared

to be exfiltrating data. Again, our detections correctly matched the ground truth data.

Worms and Network Scanning We detected approximately 30 labeled samples hav-

ing worm propagation and network scanning behavior, which was also confirmed by the

ground truth data. These samples contacted a significant number of IP addresses and

opened up a large number of network sockets in our five minute window. For example, 8

of the samples contacted over 140 IP addresses, and 13 samples opened more than 2000

sockets. The same 13 samples appeared to target external IPs over port 135, which is

associated with Microsoft RPC, a service that has had remote exploitable vulnerabilities

targeted by worms in the past.

Command and Control (C2) and DNS We detected 14 samples that attempted

to contact external servers over TCP port 6667, which is associated with the Internet

Relay Chat (IRC) protocol. IRC is also commonly used as a C2 mechanism for remotely

controlling malware, which was the case for these samples as confirmed by the ground

truth data. The most common DNS queries were for the hostnames 579.info (55 samples),

windowsupdate.net (16 samples), time.windows.com (11 samples), wpad (11 samples), and

41

Low-Artifact Analysis Using Hardware Introspection Chapter 3

google.com (10 samples). The ground truth data indicated that some of these queries were

intended as red herrings while other queries were for actual contact with more suspicious

hostnames such as irc.site406.com, asdf.it, etc.

Kernel Modules We detected 3 samples that unloaded the ipnat.sys driver and ap-

peared to gain persistence by replacing it with a malicious version.

3.7.4 Experiment 2: Unlabeled Malware

In this experiment, we demonstrate our framework’s ability to scale and extract useful

results from completely unknown malicious binaries, which were obtained from the same

source as the labeled data and also said to target Windows XP. The physical SUT

was the same as described previously (Dell T7500 with 1GB of RAM) but the virtual

machines were instantiated on a server with six quad-core Xeon X5670s (24 logical cores)

and 68GB of RAM. This enabled us to instantiate a pool of 20 virtual machines with

instrumentation. Due the vast difference in runtimes and resources, we were able to run

far fewer samples in our physical environment. We ran 1091 samples in both environments

before running out of available storage for our data on our development server. We

present the general types of behaviors detected by LO-PHI in this section. Without

ground truth data or manual reverse engineering, we are unable to verify any strong

claims from our findings—however, we feel that the findings clearly demonstrate the

usefulness of our system. Basic statistics for our analysis of these unlabled samples are

shown in Table 3.1.

New Processes A large majority (70%) of the wild samples created new processes that

persisted until the end of our analysis. The most common names are shown in Table 3.2.

Unsurprisingly, most of the malware appeared to either start legitimate processes or

42

Low-Artifact Analysis Using Hardware Introspection Chapter 3

Table 3.1: Overall statistics for unlabeled malware (Section 3.7.4).

Observed Behavior Number of Samples

Created new process(es) 765
Opened socket(s) 210
Started service(s) 300
Loaded kernel modules 20
Modified GDT 58
Modified IDT 10

masquerade as innocuously named processes. We discovered 4 samples that started a

process with the same name as the currently logged in user. We found 11 samples

created at least 10 new processes on the SUT, one of which created an unusual 84 new

processes.

Table 3.2: Top processes created by wild malware (Section 3.7.4).

New Process Number of Samples

IEXPLORE.exe 31
dwwin.exe 30
svchost.exe 30
explorer.exe 14
urdvxc.exe 13
dfrgntfs.exe 13
wordpad.exe 12
defrag.exe 12

Sockets About 19% of the wild samples opened at least one network socket. The most

commonly opened sockets are shown in Table 3.3. Three samples stood out as potential

worms or network scanners as they created over 1900 sockets; the next highest sample

created a mere 44 sockets. Unlike our labeled set, none of the wild malware seemed to

use obvious C2 channel ports such as 6667 (IRC). For example, only one sample sent

traffic over port 80.

43

Low-Artifact Analysis Using Hardware Introspection Chapter 3

Table 3.3: Top 6 sockets (by port and protocol) created by wild malware (Section 3.7.4).

Port Protocol Number of Samples

1038 UDP 58
1039 TCP 42
1042 TCP 37
1038 TCP 36
1040 TCP 36
1041 TCP 32

Services About 27.5% of the wild samples started and installed at least one new system

service. Most of these services suspiciously claimed to be hardware drivers such as USB

or audio drivers. For example, over 250 samples loaded a driver claiming to be hidusb.sys

(for Human Interface Devices over USB), possibly as an attempt to perform key logging.

3.7.5 Experiment 3: Evasive Malware

In this section, we exhibit LO-PHI’s ability to analyze evasive malware, which thwart

existing analysis frameworks. Because we aim to analyze modern malware samples, we

ran these analyses on the same hardware, but with Windows 7 (64-bit) as our operating

system. Subsequently, we also installed numerous potentially vulnerable and frequently

targeted applications [113]. Specifically, Acrobat 9.4.01, Flash 10.1.85.3, Java 7u0 (64-

bit), Firefox 38.0.1, Chrome 43.0.2357.64 (64-bit), .NET 4.5.2, and Python 2.7 (64-bit).

The analysis was done exactly as described above. However, the Volatility modules used

were limited to those that supported Windows 7, from which we selected the following

to use in our analysis: psscan, envars, ssdt, netscan, ldrmodules, driverirp, and psxview

(See Figure 3.4). It is worth noting that the ssdt and driverip modules did not return

any findings in our dataset.

1This was the last release before strict sandboxing.

44

Low-Artifact Analysis Using Hardware Introspection Chapter 3

Paranoid Fish

First, we highlight our ability to analyze evasive binaries with a ground truth sam-

ple. We chose Paranoid Fish (pafish v054) [114], a proof-of-concept open-source tool that

demonstrates various VM detection and anti-debugging techniques used by actual mal-

ware. When pafish is executed, it writes a file to disk for each artifact that it observes.

Pafish is currently able to detect most popular analysis frameworks. For example, when

run against Anubis [5], pafish dropped the following files:
hi qemu
hi sandbox NumberOfProcessors less 2 GetSystemInfo
hi sandbox NumberOfProcessors less 2 raw
hi sandbox drive size
hi sandbox drive size2
hi sandbox mouse act
hi sandbox physicalmemory less 1Gb

Similarly, Cuckoo Sandbox had the following artifacts:
hi CPU VM rdtsc
hi CPU VM rdtsc force vm exit
hi sandbox mouse act
hi sandbox drive size
hi sandbox drive size2
hi hooks deletefile m1
hi virtualbox

On the contrary, when executed in our physical analysis environment, the only artifacts

that pafish detected were:

hi sandbox physicalmemory less 1Gb
hi sandbox drive size2

In this instance, we were using a 750 GB hard drive with a 10 GB partition on it and

1 GB of physical memory. These artifacts are very easily removed by simply adding more

hardware to the SUT. However, this will have a direct effect on the time per sample in

an automated environment, as a larger disk image will have to be restored, and larger

memory snapshots will require more time and space. Nevertheless, LO-PHI is able to

analyzing pafish without detection.

45

Low-Artifact Analysis Using Hardware Introspection Chapter 3

Labeled Malware

To evaluate LO-PHI’s ability to analyze real malware samples, we obtained a set of

coarsely-labeled evasive malware samples, generated by Kirat et al. [16] in their previ-

ous work. Because these samples were specifically labeled as evasive, we only present

the findings from executing them in our physical environment. While we had ground

truth that these samples employed evasion techniques, capable of evading most popular

analysis frameworks, we were not given the intended effect or target operating system

of the samples, as we were with the samples in Section 3.7.3. Similarly, because of our

aforementioned networking restriction, we expect that numerous samples will produce

uninteresting behavior without access their command-and-control infrastructure. Thus,

we are unable to make any definitive claims as to specific intent of the malware. We

present our aggregated findings below, which indicate that our framework successfully

avoided their evasive behaviors. The dataset consisted of malware labeled as using the

evasion techniques outlined in Table 3.5.

A summary of our findings is presented in Table 3.6.

Wait for keyboard Due to the small number of samples employing this type of tech-

nique, we were not able to draw any interesting conclusions from these samples, however

all of them appeared to execute successfully. One presented an error dialog window that

our framework was able to locate and click, which appeared to kill the sample. This

particular sample also made a DNS query to goldcentre.ru. The other two had no

notable effects on our system.

BIOS-based All of the examples in this category appeared to trigger their payload.

That is, they were unsuccessful in detecting our analysis framework, and exhibited some

interesting behaviors. Every sample attempted to create an output network connec-

46

Low-Artifact Analysis Using Hardware Introspection Chapter 3

tions to smtp.mail.ru. Two of them attempted to determine their IP addresses us-

ing “whatismyip” services. The samples also spawned new processes that persisted

throughout our analysis, most masquerading as existing Windows services. The psxscan

module indicated that the processes 122.exe and 123.exe were spawned in two cases,

explorer.exe was also spawned by two of the samples. Most interestingly, one of the

samples created a hidden svchost.exe which was invisible to every process enumeration

method except psscan.

Hardware-id-based These samples also exhibited interesting behaviors. Most no-

tably, 23 of them started TrustedInstaller.exe, while 25 of the original processes

continued running for the duration of our analysis, and the others appeared to spawn

new processes. All of the samples also attempted to reach out to network resources:

24 of them attempted to connect to 219.235.1.127:80, 1 attempted to connect to

62.75.235.238:443, and 2 attempted TCP connections to either 8.8.8.8 or 8.8.4.4,

both Google-owned DNS servers, on port 53, which is the DNS port for UDP communi-

cations. All of the samples imported at least 32 modules, with the most active sample

importing 156 unique modules. Finally, 11 of them appeared to present buttons that

were detected and clicked by LO-PHI, and 2 of them set particularly interesting en-

vironment variables 9Yy9Y9YYy9YYy and YYY9YYY9YYY99, which both had the value of

E4EC4E2160D8E128C919C56915BFED6C.

Processor feature-based These samples produced the least compelling findings. While

most of them persisted, or installed new processes, 11 had no new processes in memory.

Those that did spawn new processes had filenames similar to before, with 4 of them

once again loading TrustedInstaller.exe, 3 starting a more stealthy netsh.exe, 1

spawning a malicious taskhost.exe, and, perhaps the least stealthy sample, launching

47

Low-Artifact Analysis Using Hardware Introspection Chapter 3

trojan.exe. Most of them also exhibited network activity, primarily DNS traffic, with

8 of the samples querying a variation of boxonline, and 7 of the samples attempting

reach port 8 on various IP addresses. More interestingly, one of the samples attempted

to contact 219.235.1.127, and then opened a local listening socket. A single sample in

this set also set the SEE MASK NOZONECHECKS environment variable to “1”, which is a

variable that will hide security warnings in Windows XP. This leads us to believe that

at least some of the malware in this set was targeting an older version of windows, and

likely explains why some of the samples appeared to have no effect. Two of samples also

presented dialog boxes and the button “OK” was clicked.

Exception-based The exception-based malware samples also exhibited similar behav-

ior, with all but 3 of the samples spawning new processes or continuing to execute for the

duration of our analysis. Unsurprisingly, many of these samples also attempted to engage

the network. There appeared to be two distinct clusters that reached out to various do-

mains with the strings boxonline (31 samples) and backupdate (26 samples), with the

others calling out to unique domains. The “boxonline” samples indicate that these may

be the same class of malware that was previously observed in the processor-feature-based

samples. Again, a few of the samples appeared to present a graphical interface with the

text “OK,” which was successfully clicked.

Timing-based This was our largest dataset, and thus yielded the most diverse find-

ings. Again, a majority of the samples (193 out of 251) spawned new processes or per-

sisted throughout our analysis. The most interesting process names being: skype.exe,

which was launched by one process and also hidden from normal windows process enu-

meration; taskhost.exe, which was spawned in a hidden state by 22 processes and a

less-stealthy manner by 10 other samples; conhost.exe, which was also spawned in a

48

Low-Artifact Analysis Using Hardware Introspection Chapter 3

stealthed state; and one sample spawned facebook.exe. Once more, we saw 4 samples

set the SEE MASK NOZONECHECKS environment variable, indicating that Windows XP was

likely their intended target. This dataset also had a significant number of samples (156)

making boxonline DNS queries, and 5 of the samples querying backupdate. None of

these samples produced network traffic aside from DNS.

While our analysis did not indicate malicious behavior in all of the samples in this

dataset, we were able to detect typical malware behavior from a large majority. Some of

findings indicate that at least some of the samples were targeting Windows XP, which

could explain the lack of anomalies for the few that appeared benign. Nevertheless, we

feel that our findings are more that sufficient to showcase LO-PHI’s ability to analyze

evasive malware, without being subverted, and subsequently produce high-fidelity results

for further analysis. In fact, behaviors like unlinked EPROCESS entries and listening sockets

can be exceptionally difficult to detect with software-based methodologies. Because LO-

PHI has a complete view of the entire memory space and disk activity, the ability for the

malware to hide its presence is greatly hindered.

3.8 Future Work

We have identified numerous areas that we feel are critical to eventually achieve a

more transparent and robust framework. As previously discussed, our current approach

has numerous limitations with smearing and incomplete views of the system state. CPU

debuggers could alleviate these pains by either completely halting the system during

memory acquisition or simply providing more insight into the internal register values.

We have been experimenting with Intel’s eXtended Debug Port (XDP) and ARM’s

DSTREAM debugger and found them to extremely powerful devices. Utilizing these

hardware debugging technologies in the context of malware analysis could provide very

49

Low-Artifact Analysis Using Hardware Introspection Chapter 3

high fidelity data while maintaining the transparency that we require. We plan to explore

these techniques further and incorporate any useful developments into our framework.

In this work, we limited our scope to the system-level analysis that was provided

by Volatility (e.g., process list, services, sockets). While these modules are more than

sufficient for the experiments proposed in this paper, we feel that expanding this scope

and introspecting into an individual process’s memory space to monitor process-level data

(e.g., stack, heap, call trace) could prove invaluable when analyzing advanced malware.

Since LO-PHI currently instruments the lowest-level of instrumentation that we are

aware of, we feel that continuing to push this boundary is going to be critical for the

analysis of more sophisticated future malware. To this end, we feel that our disk, mem-

ory, and CPU introspection capabilities positions us well to begin investigating malware

that attempts to infect the BIOS or peripherals on a SUT for persistence and plan on

continuing to develop these capabilities.

3.9 Conclusion

We presented LO-PHI, a novel framework capable of instrumenting physical and vir-

tual machines without any software on the system, using a set of sensors and actuators.

Furthermore, we developed a supporting framework capable of automating dynamic anal-

ysis of arbitrary binaries by introspecting into the memory, disk, and network activity,

reconstructing the semantic operations that occurred, and outputting them as concise

events (e.g., process appeared, file written). We show that the sensors used to collect

the necessary data produce minimal artifacts to any software running on the machine

(Section 3.4) and that our lack of artifacts enables LO-PHI to analyze particularly so-

phisticated malware samples with relative ease. As malware continues to advance and

evade detection, we expect hardware-based analysis frameworks to become increasingly

50

Low-Artifact Analysis Using Hardware Introspection Chapter 3

important. We believe this work exhibits the usefulness of physical-machine introspec-

tion and instrumentation, as well as the value of forensic-based malware analysis. We

demonstrated that LO-PHI provides valuable analytical capabilities that are unavailable

using existing tools. To this end, we hope to engage the community by open-sourcing

the project to help advance the state of the art in malware analysis.

51

Low-Artifact Analysis Using Hardware Introspection Chapter 3

Table 3.4: Description of Volatility modules used for evaluating evasive malware.

psscan Enumerates processes using pool tag scanning. (Capable of finding
processes that have previously terminated (inactive) and processes
that have been hidden or unlinked)

envars Extracts environment variables from processes in memory.

ssdt Lists the functions in the Native and GUI SSDTs.

netscan Enumerates network sockets using pool tag scanning.

ldrmodules Enumerates modules in the Virtual Address Descriptor (VAD) and
cross-references them with three unique PEB lists: InLoad, InInit,
and InMem.

driverirp Enumerates all DRIVER OBJECT structures in memory

psxview Helps detect hidden processes by enumerating PsActivePro-
cessHead using the following methods: PsActiveProcessHead
linked list, EPROCESS pool scanning, ETHREAD pool scanning,
PspCidTable, Csrss.exe handle table, and Csrss.exe internal linked
list.

Table 3.5: Evasive malware dataset.

Technique Employed # Samples

Wait for keyboard 3
Bios-based 6
Hardware id-based 28
Processor feature-based 62
Exception-based 79
Timing-based 251

52

Low-Artifact Analysis Using Hardware Introspection Chapter 3

Table 3.6: Summary of anomalies detected in Volatility modules and GUI buttons
found in our evasive dataset when executed in our physical environment on Windows
7 (64-bit).

Volatility Module

en
va

rs

net
sc

an

ld
rm

odules

psx
view

butt
on

s

M
a
lw

a
re

L
a
b

e
l

Keyboard 0 3 1 0 1
Bios 3 6 6 6 0

Hardware 28 27 28 26 11
Processor 53 54 59 51 7
Exception 76 79 77 76 7

Timing 229 247 231 239 4

53

Chapter 4

Enabling Full-system Emulation of

Embedded Systems

4.1 Introduction

When presented with a system to analyze, the first step usually involves performing

dynamic analyses to understand how the system works. Unfortunately in the world of

embedded systems, which are the most prolific type of computing devices today, this

simple step is not trivial, and, in many cases, it is prohibitively expensive. In fact, no

approach exists today that can emulate embedded systems in the general case. This

problem stems from a few key differentiators in the embedded world: 1) embedded

systems run on a variety of architectures (e.g., ARM, MIPS, or AVR), 2) some systems

implement custom ISAs with undocumented instructions, 3) embedded software has strict

hardware dependencies with little-to-no hardware abstraction software, 4) the code is

typically interrupt driven, and 5) embedded code depends on a multitude of peripherals,

which are unique for each system.

While there have been multiple approaches that address various aspects of the emu-

54

Enabling Full-system Emulation of Embedded Systems Chapter 4

lation problem, it is still far from “solved.” For example, researchers have put significant

manual effort into systems like the Quick EMUlator (QEMU) [101] to support more ar-

chitectures and instructions. Similarly, hardware-in-the-loop record and replay systems

(e.g., Avatar [20] and Pretender [115]) are capable of replaying hardware interactions that

were obtained through a debug interface. Finally, recent proposals that depend on a HAL

being present (e.g., HALucinator [116] and Firmadyne [23]) are able to satisfy hardware

interactions by manually implementing specific routines (e.g., read from uart). How-

ever, no system has addressed the problem of efficiently emulating peripherals, on which

the majority of these embedded systems (and their emulation) depend. In theory, these

peripherals could be manually implemented for a specific system, but the sheer number

of peripherals and the rate at which new peripherals are hitting the market make manual

implementation intractable.

Peripherals interactions are typically implemented directly as memory-mapped input

and output (MMIO), where interactions with the peripheral appear as normal memory

reads and writes. While traditional operating systems (OSes) implement a HAL to

interact with hardware, in the form of drivers and common interfaces, embedded systems

typically have their own custom HAL or interact with the peripherals directly. Herein

lies the problem — the values returned from an MMIO read are unknown to any analysis

that does not have access to the hardware. As such, the analysis must over-approximate

the range of possible values, or infer them through best-guess heuristics by analyzing the

firmware mounted by the considered system. For static analysis, this over approximation

might introduce significant overheads, which can make the analysis intractable [117], and

cause a loss of precision (e.g., due to numerous spurious program states that would not

be possible during any real execution of the system). In the case of dynamic analysis, the

inability to return an expected value will likely result in the execution stalling indefinitely

or the firmware entering some error-handling code. Either way, the analysis would likely

55

Enabling Full-system Emulation of Embedded Systems Chapter 4

fail to delve deep into the firmware code.

To make matters worse, most embedded systems are heavily dependent on interrupts

that are issued from external peripherals (e.g., when data has arrived) to advance their

execution. In fact, it is common for embedded firmware to be completely interrupt-

driven (i.e., the firmware will busy wait until an interrupt is issued). An emulator that is

incapable of issuing these interrupts will be unable to achieve any realistic functionality,

as it will never execute the interrupt handlers.

The goal of this work is to create a software-based version of any hardware periph-

eral, automatically, that is capable of coning the firmware into believing that the actual

hardware peripheral is present by returning valid MMIO values and issuing relevant

interrupts.

Conware works by first ingesting logs of real hardware interactions (i.e., inter-

rupts, reads, and writes) of the peripheral in question, which can be obtained by using

our novel source-code instrumentation or existing hardware-in-the-loop techniques (e.g.,

Avatar [118]). These recordings are converted into directed acyclic graphs (DAGs), where

the edges are annotated with MMIO writes and the interrupts and memory values are

encoded as a peripheral state in the nodes. Then, the DAGs (one per peripheral) are

converted into ω-automata using a novel graph-transformation technique, which serves

as a generalized representation of the peripheral. Additionally, multiple recordings can

be merged to create an automaton that accurately represents and generalizes all of the

recorded interactions.

By representing peripherals as composable automata, Conware is able to not only

combine recordings of the same peripheral, but it can also be used to merge disjoint pe-

ripherals to create a complete system that has multiple independent peripherals attached.

For example, an IoT camera may consist of an ARM processor, a camera, a microphone,

and a WiFi controller. To emulate this camera’s firmware, one could purchase those

56

Enabling Full-system Emulation of Embedded Systems Chapter 4

same components and connect them to the appropriate ARM processor on a develop-

ment board. Models for each of these peripherals could then be generated, independently,

by running the example source code that is provided with the different peripheral compo-

nents. These recordings could then be converted into automata, combined, and attached

to an emulation environment that can be used to successfully emulate the firmware of

the camera, which was never instrumented. To the best of our knowledge, Conware is

the only system capable of creating generalized peripheral models that can be used on

multiple firmware samples.

In summary, we claim the following contributions:

• an LLVM-based tool to automatically instrument source code to record all periph-

eral interactions (i.e., MMIO and interrupts) on embedded systems,

• a novel technique for generating ω-automaton models of peripherals,

• a novel technique for merging peripheral models to facilitate portable models and

full-system emulation,

• Conware: an open-source framework1 for recording, modeling, and emulating

embedded peripherals, and

• an analysis of Conware on popular embedded peripherals, demonstrating its ef-

ficacy by successfully modeling 10 peripherals and emulating one peripheral-heavy

firmware that was never instrumented.

4.2 Background

Generally, the goal of any analysis tool is to observe the system under analysis (SUA)

in a realistic environment to extract features and draw conclusions about its inner work-
1https://github.com/ucsb-seclab/conware

57

https://github.com/ucsb-seclab/conware

Enabling Full-system Emulation of Embedded Systems Chapter 4

ings. Thus, an effective embedded systems analysis framework must create a realistic

representation of the hardware to ensure that the software will execute correctly and

produce useful results. In the literature, this concept is known as survivability, which

is “the ability for the firmware to execute the same regions of code as it would if the

original hardware were present, without faulting, stalling, or otherwise impeding this pro-

cess [115]” or “the firmware never ... crashes, stalls, or skips operations due to peripheral

IO errors. [119]”.

There are four general approaches to achieve survivability:

Hardware Debugging. Hardware debugging is capable of running the SUA on the

actual hardware and debugging the real system. This can be done by leveraging existing

debugging interfaces, e.g., JTAG, or potentially interposing or snooping on the hardware

components themselves. On production devices, it is increasingly rare for these interfaces

to be exposed. Moreover, in many cases it is prohibitively expensive to acquire the

SUA itself, instrument it, and potentially replace it if the analysis go awry — imagine

irreversibly damaging an electric car.

Hardware-in-the-Loop Emulation. Debugging directly on the hardware can be

slow, and lack certain features to aid analysis (e.g., the ability to record every instruc-

tion or set a large number of breakpoints). Thus, hybrid, hardware-in-the-loop tech-

niques [17, 20] have emerged to address this by emulating the main central processing

unit (CPU) and intelligently forwarding any interactions with hardware peripherals to

the actual hardware. While this approach offers a more feature-rich analysis, and po-

tentially much faster, analysis environment, hardware-in-the-loop does not scale, as the

number of analyses executing is still limited by the physical hardware devices that are

available. This lack of scale is due to the fact that a real, production hardware system

58

Enabling Full-system Emulation of Embedded Systems Chapter 4

is needed for each emulation platform, versus emulation which scales as a factor of com-

putation resources. Similarly, there are numerous hardware constraints that are much

more difficult with hardware-in-the-loop approaches (e.g., frequent peripheral-initiated

interrupts [120]).

Record and Replay. This approach involves removing the hardware dependency by

obtaining a high-fidelity recording of the interactions, using the actual hardware, and

then use this recording to effectively “replay” the interactions with the hardware. This

technique is especially useful when the portion of code being analyzed does not have

many hardware dependencies or the interaction in question is being replaced by the

analysis itself (e.g., fuzzing [28]). This technique has been implemented by systems like

PANDA [22], which record the interactions in real time and then later use this recording to

feed “real” data into a more heavyweight analysis. However, record and replay techniques

do not facilitate any analyses that aim to exercise hardware interactions that were not

directly observed in the recording phase.

Full-System Emulation. Full-system emulation aims to provide the ability to execute

the firmware in a completely emulated environment, ensuring survivability without the

need for any hardware. Ideally, a full-system emulator would also enable the firmware to

exercise all of its functionality and interact with all of the assumed hardware peripherals.

This can either be achieved by implementing the hardware peripherals manually (e.g.,

P 2IM [119], HALucinator [116], or Simics [121]) or automatically (e.g., Pretender [115]).

Despite the various advances, scalable full-system emulation of embedded systems is still

an open problem. Pretender is the closest that the community has achieved, but it is

only capable of replaying the basic interactions of the same hardware and firmware that

were recorded in a mostly linear fashion.

59

Enabling Full-system Emulation of Embedded Systems Chapter 4

Initstart Ready Busy

parameters

initialized

*

full

empty↑

Figure 4.1: A state-machine representation of a simple universal asynchronous re-
ceiver-transmitter (UART) controller, where the peripheral is either awaiting to be
initialized, ready to received any (∗) data, or in a busy state, which is transitioned to
when the buffer is full and transitioned out of when the buffer has space (potentially
triggering an interrupt)

Conware has advanced the state-of-the-art in full-system emulation by facilitating

portable and composable peripheral models, which can be leveraged by any emulation

framework to enable unbounded execution of arbitrary firmware, even if the specific

firmware and hardware being emulated have never been instrumented.

4.2.1 Motivation

As a motivating example, we examine the humble UART controller, which provides

a simple interface to either read or write a single byte at a time (e.g., a text-based

interface).

UART, as is the case with many peripherals, has the ability to operate with or without

interrupts. If an analyst uses a system that does not use interrupts to generate a model

of the peripheral, it is unlikely that this model would be useful for emulating a different

system that does use interrupts. Indeed, the interrupt-based firmware would fail to

execute, as it would wait indefinitely for an interrupt to be fired. Similarly, a näıve replay

of MMIO values that were recorded with interrupts would not work on a non-interrupt

firmware because the observed writes (i.e., enabling interrupts for cached values) would

differ from the observed values (i.e., busy-waiting for a ready bit), requiring the emulation

60

Enabling Full-system Emulation of Embedded Systems Chapter 4

framework to “guess” what to do next. Thus, to ensure the complete functionality of

this peripheral, a valid model must account for at least two different scenarios, which

are unlikely to ever occur in a single firmware. Even worse, UART is capable of reading

and writing any byte. If the recorded UART interaction was non-variable (e.g., it always

output a fixed string) and the firmware being analyzed had more varied interactions (i.e.,

exercising more of the peripheral’s functionality), simple record-and-reply-based systems

would fail to adequately handle these interactions.

Table 4.1: An recording obtained from instrumenting a simple firmware that prints
”ON\r\n” and ”off\r\n” repeatedly over UART, without interrupts

Operation Address Value
...

...
...

WRITE 0x400E0800 (control) 0x50
READ 0x400E0814 (status) 0x40001A1A (ready)

WRITE 0x400E081C (TX) 0x4F — O
READ 0x400E0814 (status) 0x40001818 (busy)
READ (repeats 434×) (repeats 434×)
READ 0x400E0814 (status) 0x4000181A (ready)

WRITE 0x400E081C (TX) 0x4E — N
READ 0x400E0814 (status) 0x40001818 (busy)
READ (repeats 2,634×) (repeats 2,634×)
READ 0x400E0814 (status) 0x4000181A (ready)

...
...

...

Despite the difficulties with replaying a UART recording, the actual state-machine of

a typical UART peripheral is quite simple (see Figure 4.1). In fact, almost all embedded

systems are implemented as state machines [122]. A high-level UART state machine

consists of three states: an initialization state, where the firmware can set parameters

like the bits of actual usable data (BAUD) rate; a ready state, where the controller is

ready to receive and transmit data; and a busy state for when the controller is currently

transmitting or receiving. These states are conveyed to the firmware through MMIO

status registers. Thus, the firmware must either continuously check the status register

61

Enabling Full-system Emulation of Embedded Systems Chapter 4

before it can write new data (see Table 4.1) or ask the controller to trigger an interrupt

when the state transitions from busy to ready (i.e., empty↑).

Conware is the first system capable of extracting models of the high-level state-

machines that define the peripheral, using only recorded interactions.

4.3 System Design

Conware has three core components (see Figure 4.2):

• a source-code instrumentation framework capable of recording MMIO interactions

and sending the log over any hardware interface (Section 4.3.1). This module is

not necessary for Conware to work, as it can use recordings produced by previous

work [115,118];

• a model generation and optimization framework that converts a raw recording log

into a DAG, and then into a ω-automata (Section 4.3.4); and

• an emulation framework that is capable of using the generated models (Section 4.3.7).

Indeed, these three components are standalone contributions, as each provides a

unique contribution to the field.

Recording. Conware requires a recording of the low-level interactions (i.e., MMIO

and interrupts) with the target peripheral, which can be obtained through various meth-

ods. Indeed, hardware-based recording has already been explored, and the output of

the existing tools can be used by Conware. These recordings can be of any firmware

interacting with the peripheral; Conware does not require a recording from firmware

being emulated. However, hardware-based methods require access to the original hard-

ware and a debugging or instrumentation interface and are more likely to result in the

62

Enabling Full-system Emulation of Embedded Systems Chapter 4

Source Code

LLVM Instrumentation

Source CodeTraining Source

Training Binary
Logging Hooks

Real
CPU

Peripherals

Recording

Graph Encoding

Model Merging

Automata Generation

Emulated
CPU

Models

Analysis
Binary

3rd Party Tool

Recording Modeling Emulation

Figure 4.2: High-level design of Conware: logging hooks are inserted into the com-
piled binary, the binary is run on real hardware to extract a detailed log, these logs
are then converted into concise state-machine representations, and then the uninstru-
mented binary and models are run on emulated hardware, enabling detailed, scalable
analyses

Heisenberg effect (i.e., the act of observing the phenomena alters its outcome) because

of the timing overhead imposed. Thus, we created a new source-code instrumentation

method for obtaining accurate hardware recordings to supplement this work.

Modeling. Conware generates models by first mapping the recordings of observed

interactions (raw recordings) into directed graphs (one per peripheral), which are then

converted into ω-automata. These automata are human-readable and facilitate un-

bounded execution since they more accurately represent the internal state machine of

the real peripheral. Unfortunately, existing state machine minimization techniques (e.g.,

the Hopcroft minimization algorithm [123], implication tables, or the Moore reduction

procedure) are ill-suited for our purposes. This necessitated the creation of a novel

automata-generation algorithm (Section 4.3.5).

Emulation. The ultimate goal is to emulate the firmware for the SUA, which can

typically be obtained from the vendor’s website or through more invasive techniques (e.g.,

using a Bus Pirate [124] or advanced hardware hacking techniques [125]). Our automata,

which can be generated from any example source code on any similar hardware (e.g., a

63

Enabling Full-system Emulation of Embedded Systems Chapter 4

development board), can be plugged into any popular emulation framework as a stand

in for the physical peripheral. More precisely, Conware is able to emulate arbitrary

firmware without ever instrumenting the actual firmware or the hardware that it was

intended for.

4.3.1 Source Code Instrumentation

Conware uses the LLVM framework [126] to instrument the firmware source code.

Consequently, our instrumentation works at the LLVM Bitcode level [127] and works

on all of the source languages supported by LLVM (currently over 20). The purpose

of this instrumentation is to record all of the interactions with MMIO peripherals (i.e.,

reads, writes, and interrupts). This is implemented as a buffered logger that exposes two

functions:

• conware log(address, value, type) is used to log the addresses and values that

were read from or written to (i.e., type).

• conware interrupt log(num) is used to log the firing of an interrupt of a specific

interrupt request line (IRQ) number (i.e., num).

This logging infrastructure maintains an in-memory buffer and also takes care of flush-

ing the buffer to a known interface (e.g., Joint Test Action Group (JTAG) or UART)

when it is full or a programmed trigger is hit. By logging directly to memory, Con-

ware incurs a minimal performance overhead, and thus a minimal Heisenberg effect. In

fact, inline binary recording enables Conware to overcome the challenge of recording

frequent interrupts accurately [115]. Furthermore, our logger provides a single place to

handle multi-threading and reentrancy [128], which is necessary for accurately recording

interrupts in practice. In addition to recording the immediately relevant information, we

also log the program counter to facilitate debugging and future analysis.

64

Enabling Full-system Emulation of Embedded Systems Chapter 4

4.3.2 Recording MMIO accesses

Though, theoretically, it is important to instrument all of the loads and stores to

not to miss any MMIO access, previous work [129] has shown that MMIO is usually

accessed via hardcoded addresses, which can be retrieved by analyzing the firmware code

of an embedded system. Exploiting this insight provides a lower overhead and is more

tractable. Thus, all of the accesses that use hardcoded addresses are instrumented by

inserting a call to conware log after loads and before stores, with the value being

read, or that is about to be written, respectively. In fact, in our specific examples, we

found that this could be optimized even further, as all of the peripheral interactions were

represented as structs in the source code (greatly reducing the overhead costs).

Due to memory limitations, Conware stores all of the reads in a compressed array

format for each entry, where repeated reads are stored only once, with an associated

counter. This counter and log are reset every time a new write is observed, as writes are

akin to state transitions of the peripheral. This is a necessary optimization since many

MMIO values are read repeatedly until they change (e.g., a status register) and would

quickly exhaust the buffer otherwise.

4.3.3 Recording Interrupts

To record interrupts, we first retrieve all the interrupt service routines (ISRs) along

with corresponding interrupt number they service from the interrupt vector table, which

is always linked at a static address. Conware instruments all the identified ISRs by

inserting a call to the conware log function at the entry of the function with the cor-

responding interrupt number. These interrupts are similarly compressed with a repeat

counter to save buffer space and optimize our recording. The correlation between in-

terrupts and their associated peripheral are discerned from the data sheet of the micro-

65

Enabling Full-system Emulation of Embedded Systems Chapter 4

controller, which are manually entered once per chipset. For example, page 38 of the

datasheet for the SAM3X explicitly lists every peripheral interrupt in the nested vec-

tored interrupt controller (NVIC) [130], and the handlers to these routines are trivially

found in the source code or compiled binaries. These memory locations will be constant

across all variants of the same processor (i.e., all Cortex-M3 processors will have the

same values [131]).

4.3.4 Encoding Recordings

Hardware peripherals typically only change states when the software writes a value

to one of the registers on the peripheral [115] (e.g., the firmware writes a command to

the peripheral). Thus, Conware first encodes the recordings as simple DAGs where the

edges are labeled with MMIO writes and the nodes encode the “state” of the peripheral,

which includes the values that each memory region should return when they are read, as

well as the interrupts that should be fired (and how many times). We call this graph a

linear model, which is later converted into a more robust automata.

Formally, the DAG is denoted as (N,E) where E is the set of directed edges and N is

the set of nodes. An edge e12 ∈ E from n1 to n2 is represented by the tuple (n1, n2). Each

node n has an associated state, such that n.state ∈ S, where S is the set of all states

in a given DAG. This simple linear DAG can only reproduce a verbatim replay of the

recorded content, as any out-of-order operations would not have a valid state transition

and could only be handled by an educated guess.

As an explicit example, a write to the UART transmit (TX) register would traverse

the edge with that specific value, and put the peripheral into a “new” state. This state

would then return the following pattern: BUSY for the first 434 reads, and then READY on

the 435th. An explicit example of a node in our model for the UART peripheral is shown in

66

Enabling Full-system Emulation of Embedded Systems Chapter 4

...
Baud Rate Generator Register
Transmit Holding Register
Receive Holding Register

 Status Register
Interrupt Mask Register

 Interrupt Disable Register
 Interrupt Enable Register

Mode Register
Control Register

Individual State

Storage

Patterns

Storage

Figure 4.3: A individual node representation in our graph (each node contains a single
peripheral state) of a UART controller, where edges are writes and the state encodes
the values to be read from specific addresses (Storage works as normal memory and
Patterns return more complex data)

Figure 4.3, where each address has its own sub-model, within the overarching peripheral

graph. And an example output of converting Table 4.1 into our DAG representation can

be seen in Figure 4.4.

Within in each state, each memory address is encoded as sub-model to ensure that

the appropriate values are returned when that address is read. These memory models

are lumped into three general types [115]:

• storage – acts like normal memory,

• pattern – a single or repeated pattern, and

• monotonic – returns a monotonically changing value

For example, if a particular address in the peripheral (e.g., a status register), always

returns the same value, we will simply model that as a static pattern, which will always

return the same value, regardless of how many reads occur. Conversely, if the register

always returns a string of 0xAs, followed by a 0xB, our model will keep these semantics.

This is currently the state of the art [115].

67

Enabling Full-system Emulation of Embedded Systems Chapter 4

Interrupts

Conware must not only support interrupts, but must be able to automatically

learn when to trigger which interrupt. Fortunately, the NVIC is standardized for most

architectures (i.e., every NVIC for ARM has the same structure), which permits us

to manually hardcode the appropriate actions for various timers etc. by reading the

datasheet. For example, our Cortex-M3 has eight timer counters (i.e., Timer Counter

Channels 1 through 8), that can be enabled or disabled. Thus, when a specific timer

interrupt is enabled, we can programatically trigger that interrupt periodically until the

interrupt is later disabled. Somewhat unintuitively, the actually frequency of triggering

the interrupt does not actually matter. For example, if the interrupt is supposed to trigger

every 50 ms on a real board, deviating from this is unlikely to result in an erroneous

emulation. The reason for this is that embedded systems rely on these interrupts for their

time, and have no other timekeeping mechanisms. Thus, the code treats the interrupts

as a single ”time unit,” but does not make any assumptions as to the actual time that

has passed. This assumption is only true of timer-like interrupts.

For peripheral-triggered interrupts (e.g., a data ready interrupt), this problem is ex-

acerbated by the fact that interrupts can depend on the context of the peripheral and the

firmware. To ensure that interrupts are triggered at the correct time, they are encoded

as part of a node’s state (i.e., the specific IRQ numbers and how many of each), and

triggered when the incoming edge is taken. Thus, interrupts will only be triggered after

a write was observed that was also immediately followed by interrupts in the record-

ings (i.e., that specific state in our model was reached, not just the address/value pair).

This is contrary to previous work [115], which would observe a specific write and then

begin triggering interrupts indefinitely, which is likely to over approximate in practice.

When observing our UART controller, the interrupt was never explicitly disabled, but

68

Enabling Full-system Emulation of Embedded Systems Chapter 4

(empty)

0x400E0800, 0x50

0x400E0814: 0x40001A1A (Pattern)

0x400E081C, 0x4F “O”

0x400E0814: 0x40001818 434x (Pattern)
0x40001A1A

0x400E081C, 0x4E “N”

0x400E0814: 0x40001818 2,634x (Pattern)
0x40001A1A

Figure 4.4: A DAG representation of a simple UART device, where each node rep-
resents a state and encodes the address to be read from (e.g., status register) and
the values to be returned (i.e., TXRDY or BUSY). Nodes are traversed when writes are
observed (i.e., writing “O” to the TX register)

one interrupt per write was issued (i.e., each write queues a future interrupt).

An explicit example of this can be seen in Figure 4.5, which was generated by record-

ing and optimizing a firmware that prints “Knock!\r\n” every time that a piezo trans-

ducer is knocked. Our model correctly encodes the interrupts into the state where the

final byte was written, and all subsequent byte writes to the TX register are encoded as

a self-loop. In practice this corresponds to our emulator returning busy the appropriate

number of times, and triggering a ready interrupt every time a valid write to the TX

register is observed. Indeed, this automata can be used to emulate any firmware that

supports interrupts. If the execution deviates from our model (i.e., the execution wrote

a value that is not present in our model), we perform a breadth-first search (BFS) to

identify an acceptable state within our model (e.g., any write to the TX register other

than “K” would ultimately take the wildcard edge where the buffer is READY). This, as

shown in Section 4.4.3, will result in the proper actions ultimately being taken (e.g.,

when enough buffered writes are observed, it will transition into the ready state and the

interrupts will fire until the buffer is emptied).

69

Enabling Full-system Emulation of Embedded Systems Chapter 4

0x400E0814: 0x40001A1A

(0x400E080C,0xFFFFFFFF) (0x400E0800,0x50) (0x400E0920,0x202)
(0x400E0808,0x61) (0x400E0800,0xAC) (0x400E0820,0x222)

 (0x400E0804,0x800)

0x400E081C, 0x75 “K”

0x400E0814: 0x40001818

0x400E0808, 2 (TXRDY)

0x400E0814: 0x40001818

0x400E0808, 2 (TXRDY)

0x400E0814: 0x40001818

0x400E0808, 2 (TXRDY)

0x400E0814: 0x40001818

0x400E0808, 2 (TXRDY)

0x400E0814: 0x40001818

0x400E0814: 0x40001818

0x400E0808, 2 (TXRDY)

0x400E0814: 0x40001818

0x400E0808, 2 (TXRDY)

0x400E0814: 0x40001A1A
Interrupt: 24 (Once)

0x400E0808, 2 (TXRDY)

0x400E0808, 2 (TXRDY)

0x400E081C, * (Wildcard)

Initial State

Figure 4.5: An ω-automata for a UART peripheral generated from a recording that
prints “Knock!\r\n” repeatedly. The initial state will accept all configuration param-
eters, once a “K” is written, the peripheral becomes BUSY until the READY state is
reached and interrupts are thrown.

4.3.5 Automata Generation

The next step of our approach involves transforming our DAGs, obtained as explained

in Section 4.3.4, into ω-automata. Before generating our ω-automata we must first define

what it means for two states to be mergable (i.e., they can be merged into one), or, put

another way, which nodes in the graph are in the same equivalence class. Two generic

states a and b can be merged, indicated by a∪ b, if they are equivalent. The states a and

b are equivalent, indicated as a ' b, if they have the same identified type (e.g., storage,

constant, or pattern) for every overlapping memory address, and those types are also

equivalent (i.e., they encode the same data). Nodes are mergable if and only if their

states are mergable. Additionally, we consider two edges to be equivalent, also denoted

by ', if they have the same labels (i.e., the same write address and value).

For example, take states a, b ∈ S where a has memory models for address 0x100

70

Enabling Full-system Emulation of Embedded Systems Chapter 4

(Storage) and 0x200 (Pattern) and b has memory models for 0x100 (Storage) and 0x300

(Pattern). These states would be considered to be mergable, since there is no risk of

returning a wrong value. The returned values would be the same for both a or b and

a∪ b. Indeed, a∪ b is strictly more verbose than either of the individual states. Patterns

are only considered equal if they are identical. While this could potentially be relaxed,

there are numerous cases where the exact values are critical, e.g., the NEC intermediate

representation (IR) encoding protocol.

While this definition of mergability is intuitive, its lack of transitivity does slightly

complicate the state-reduction phase. More precisely, it is possible for A ' B and B ' C

but A ∪ B 6' C (e.g., A:[0x100:Storage], B:[0x200:Pattern], C:[0x100:Pattern]). Thus,

we must be diligent when merging equivalence classes to make sure that all of the merges

will succeed without violating the soundness of our model.

The goal of the automata-generation phase is to combine all of the mergable states

to create a more general representation that can be used for indefinite execution and

handle out-of-order operations. For example, a linear DAG, which is the current state of

the art [115], is incapable of handling execution beyond the last node in the graph and

would completely fail if firmware were to execute functionality in a different order. A

generalized automata, in theory, should not suffer any of these shortcomings.

Our automata-generation algorithm starts at the initial node (i.e., the node that

corresponds to the first action in the recording) in the graph (i), and traverses the

graph using a nested depth-first search (DFS) such that i is compared to every node

that is reachable from i. This search is then repeated for every subsequent node in the

graph, until a set of nodes that can be merged (i.e., in the same equivalence class, C) is

successfully identified. If two nodes are mergable, the algorithm then traverses all of the

equivalent outgoing edges (i.e., the edges have the same labeled memory write address

and value) recursively to ensure that after the two nodes are merge that all of the edges

71

Enabling Full-system Emulation of Embedded Systems Chapter 4

will remain valid. More precisely, for two nodes to be merged, they must be mergable,

and all of the nodes on the same outgoing edges must also be equivalent. This recursive

comparison is done by first identifying equivalent edges for the two initial nodes, and

then recursively identifying all of the equivalent edges for any other identified nodes until

a cycle is completed or the two nodes in question share no common outgoing edges. If

two unequal nodes are found, the nodes are marked as unmergable. Finally, because our

equivalence comparison is non-transitive, we confirm the equivalence of the cross product

of the various node equivalence classes before merging the equivalence class into a single

node and combining the relevant edges.

After a successful merge, the algorithm is then run again, starting at the initial node

(i). This process is repeated until the algorithm reaches a fixed point, which is defined by

reaching the end of the nested DFS for every node in the graph without any nodes being

merged. The entire algorithm is shown more formally in Algorithm 1. This algorithm

guarantees that we have obtained an ω-automaton, but not necessarily the best or small-

est representation, as the order of operations could impact the outcome. Nevertheless,

this automaton is more than sufficient for the purpose of emulating and understanding

the general structure of the peripheral’s internals. The results of this algorithm on a

UART recording which prints “Knock!\r\n” indefinitely is show in Figure 4.5.

To achieve more general automata, we consider an edge to be a wildcard (i.e., any

value is an acceptable state transition for that address), and merge the associated edges,

if and only if all of the outgoing edges with that address have the same destination node

and the number of similar edges is above a threshold (e.g., five). Indeed, this merging

of edges greatly increases Conware’s ability emulate unobserved code branches in our

72

Enabling Full-system Emulation of Embedded Systems Chapter 4

training data as well as never-before-seen firmware (see Figure 4.5).

Function GetEdges(n1, n2):
s1 ← n1.state;
s2 ← n2.state;
if s1 ' s2 then

if n1 ∈ C ∧ n2 ∈ C then
return;

end
C ← C ∪ {s1, s2};
EC ← ConnectedComponents(C, n1);
O ← OutgoingEdges(EC, n1);
R← ∅;
forall e1 ∈ O do

forall e2 ∈ n1.edges ∪ n2.edges do
if e1 ' e2 then

R ← R ∪ (e1.dest, e2.dest);
end

end

end
return R;

else
return ⊥;

end

Function GenerateAutomata(N):
forall n1, n2 ∈ N | n1 6= n2 do

C ← ∅;
M ← GetEdges(n1, n2);
while x, y ← pop(M) do

M ←M ∪ GetEdges(x, y);
end
if M 6=⊥ then

Merge(C);
end

end
return;

Algorithm 1: Functions for determining if two nodes are equal and can be merged,
which will ultimately update the graph by merging all “equal” nodes, and all of their
annotations, into a single node

4.3.6 Combining Models

Because of the way that our automata generation is implemented, merging recordings

is relatively straightforward. First, we combine the initial linear DAGs by starting at

73

Enabling Full-system Emulation of Embedded Systems Chapter 4

the initial nodes and merging every mergable state until there is a convergence (i.e.,

the current node is equivalent but the outgoing edges are not equivalent). Given that

peripherals are expected to power on into a known state, it is unlikely to ever have a

read value differ without first seeing a deviation in the written value (i.e., putting the

peripheral in a different state). The resulting merged graph will then have only a few

nodes with multiple outgoing edges and no cycles (i.e., a tree).

Regardless of the number of recordings that are merged, the automata-generation

step proceeds as it did in the single-recording scenario – iteratively merging equivalent

states until no more nodes can be merged. The result of this step is a model that is

generalized and satisfies the constraints of every input model. Said another way, this

model can be used to successfully emulate any of the original firmware, and likely many

other firmware that use the same peripherals.

4.3.7 Hardware Emulation

Our current emulation framework is built in Python as a an extension of Avatar2

and is loosely based on Pretender. Conware implements a custom AvatarPeripheral

that encompasses the entire MMIO memory region, where the reads and writes interact

directly with the generated models, advancing states on writes and returning appropriate

values on reads. Within this class, the memory is split into individual peripherals, which

can either be identified manually (e.g., by reading the data sheet) or automatically [115].

Each individual peripheral has its own disjoint automaton that is actuated in isolation.

Once the emulator is running, the write command will result in the model advancing,

74

Enabling Full-system Emulation of Embedded Systems Chapter 4

either to the next state if that forward edge exists, or by performing a BFS in the case

that is it does not. If the BFS fails, the first fallback is to pick the node in the entire

graph that has the most observed incoming edges with that address value. If a write to

this address was never observed, we simply stay in the same state and create a Storage

model for that address.

If a state is entered that has interrupts, a thread is started for each interrupt that

will trigger it the appropriate number of times. This is done to ensure that the firmware

still executes seamlessly, without waiting until the interrupts are handled. Similarly,

this permits Conware to trigger continuous interrupts (e.g., a counter that is triggered

every Xms). As previously mentioned, known interrupts are hard-coded in our emulation

framework and triggered when the appropriate enable bit is written to a specific address,

while peripheral-specific interrupts are triggered during state transitions.

4.4 Evaluation

The Arduino platform proved to be a perfect testing ground for Conware — it is

open source, is compatible with a large array of peripherals, and has well-documented

example code for the supported peripherals. Indeed, analysis aside, Conware provides

the ability fully emulate Arduino firmware with arbitrary peripherals, making it the first

system capable of this feat. To ensure the applicability of our evaluation to real-world

systems, we opted to use the Arduino Due, which has a 32 bit ARM Cortex-M3 processor

(the Atmel SMART SAM3X/A [130]). To instrument the Arduino code, we modified the

build environment to instrument both the Arduino environment and the program that

was being compiled on top of that environment (i.e., the .ino file). This instrumentation

is capable of automatically injecting logging into any Adruino program, including library

packages, and outputting the recorded log over any standard interface (e.g., UART)

75

Enabling Full-system Emulation of Embedded Systems Chapter 4

after the specified buffer has been exhausted (e.g., 2,000 entries with compression) or a

triggered event was detected (e.g., a button press). This buffer can be filled, emptied,

and recorded indefinitely, which enables the recording of long-running or MMIO-intensive

interactions.

For our evaluation we ran a spread of unique experiments to demonstrate the practi-

cality our modeling framework:

• Recording and replaying the same firmware with a Conware model replacing the

hardware (Section 4.4.2)

• Recording and replaying the same firmware with a merged and generalized automa-

ton — multiple recordings where merged into one model and the original firmware

were run against it (Section 4.4.3)

• Recording and replaying an “unseen” firmware with a merged and generalized au-

tomaton — the model was generated using different recordings of individual pe-

ripherals using the example source code that was provided with those peripherals

(Section 4.4.4)

The purpose of these experiments was to demonstrate that Conware is a viable so-

lution for emulating hardware peripherals and that it is capable of handling real-world

peripherals. All of these experiments were run in a fully-automated fashion (i.e., a single

script was executed to generate all of the models and execute the emulator). We do

not claim that these findings indicate that Conware is the solution or that emulating

embedded systems is solved, but instead advocate graph-based, automata modeling of

peripherals as a viable technique for the research community to focus more effort on

to continue to address this critically-important problem (i.e., full-system emulation of

embedded systems).

76

Enabling Full-system Emulation of Embedded Systems Chapter 4

void loop() {

printf("ON\n\r");

digitalWrite(LED_BUILTIN, HIGH);

delay(1000);

printf("off\n\r");

digitalWrite(LED_BUILTIN, LOW);

delay(500);

}

Listing 1: Simple Arduino program that blinks an LED and prints the lumination status
over UART

Before delving into the results, we want to first emphasize the complexity involved

with emulating an embedded system. We first instrumented an Arduino program that

simply blinks the on-board light emitting diode (LED) and prints text over UART (see

Listing 1). With a 2,000 entry recording buffer (with compression), our instrumentation

logged 88,287 MMIO accesses, which consisted of 65 unique addresses across 11 periph-

erals. The breakdown of these accesses were as follows: 52 unique addresses were written

to (159 unique address-value combinations), 21 unique address were read from (37 unique

address-value combinations), and zero interrupts (excluding SysTick) were observed. To

represent these logs in our linear DAG it requires 11 separate graphs (one for each pe-

ripheral), which in total contain 1,014 nodes, 1,003 edges, and encode 87,284 values in

their states (i.e., values to return when certain memory addresses are read). The UART

peripheral accounts for 367 of those nodes and the platform input and output B (PIOB)

peripheral, which is used to control the LED, accounted for 506 nodes. Emulating even

a simple firmware, such as this one, is no trivial task. After applying our automata-

generation technique, the graphs contained a combined 26 nodes (a 22× reduction) and

45 edges, 21 of which are self loops. This reduction can be made arbitrarily high by

recording for longer, as the number of equivalence classes is static.

77

Enabling Full-system Emulation of Embedded Systems Chapter 4

4.4.1 Dataset and Experimental Setup

To demonstrate the breadth of devices, and interactions, we strategically choose a few

indicative peripherals, many of which are used by a hobbyist smart door lock firmware

that we emulate in Section 4.4.4:

• IR: an IR remote controller [132] and an IR receiver,

• LCD: a standard HD44780 liquid crystal display (LCD) display,

• Knock: a piezo transducer to detect a ”knock,”

• UART: various UART interactions, both with and without interrupts,

• Color: a Cadmium-Sulfide (CdS) photo resistor used to detect the color incoming

light,

• Servo [133]: a 180 degree servo motor,

• LED: both onboard and external LEDs,

• Ethernet: an Ethernet board capable of 100 Mbit communication,

• Button: an external button,and

• RF TX: a 433 MHz radio frequency (RF) receiver.

The IR remote is particularly interesting, as it works by starting a timer (TC5), which

will fire interrupts indefinitely. The interrupt controller reads the value from the IR

receiver (e.g., high or low), and will continue to receive data, according to the NEC

IR transmission protocol [134], until an entire data unit was received. At this point,

the individual bits in the buffer are decoded into their respective byte values (e.g., the

number “1” is encoded as 0xFF30CF), which can then be parsed and handled by the

78

Enabling Full-system Emulation of Embedded Systems Chapter 4

application. This means that in order to properly emulate this peripheral, the interrupts

must be triggered appropriately, the individual bits must be fed in correctly, and in order,

and the subsequent actions must also be supported (e.g., flashing an LED or printing

values over UART, which also uses interrupts).

The LCD code is high-bandwidth, and indicative of more complicated peripherals

that display detailed information to users (e.g., an alarm clock, weather app, or smart

electronic). The Knock sensor is representative of any analog sensor (e.g., temperature,

acceleration, or humidity) that has a range of values, of which the firmware is typically

concerned with some “threshold” value. UART is still one of the most popular protocols for

interacting with embedded systems, and presents an interesting case because, while its

actual functionality is simple, the implemented functionality is unbounded (e.g., complete

shell interfaces). Color is an analog sensor that also depends on actuating nearby LEDs

(e.g., red, green, and blue) to detect the reflected light. Buttons, servos, and LEDs are

common interfaces for most embedded systems that need to communicate with the user

efficiently or actuate some external motor. And, finally, to ensure that our peripherals

were indicative of popular IoT devices, which communicate with external devices, we also

included an Ethernet controller and a popular 433 MHz wireless radio. Both of these

communication peripherals were running echo servers and were appropriately actuated

in training.

All of these sensors came with accompanying libraries and example code, i.e.,

File|Examples in the Arduino integrated development environment (IDE), that was

used in our experiments to remove any biases. These examples programs were used “as

is” to generate our recordings. Emulations were run on a laptop with an Intel® Core™

i7-8550U CPU @ 1.80 GHz and 16GB of memory.

79

Enabling Full-system Emulation of Embedded Systems Chapter 4

Real-world Relevance In addition to the chosen peripherals being popular in IoT

devices, the Arduino platform is also used by many rapid prototyping companies [135].

Thus Arduino-based peripherals and their interactions in Arduino products should be

indicative of real-world applications, as the major difference from prototype to production

is typically cost reduction by choosing smaller, less expensive parts and creating a custom

printed circuit board (PCB) that only includes the necessary components [136]. In our

smart door lock firmware, the peripheral interactions are also non-trivial. The interrupts

for the IR sensor are constantly firing to accept user input. If the “knock” command

is received, it then enters a loop that reads the piezo transducer for a fixed amount

of time (using a hardware timer), and then will actuate the servo appropriately based

on the correctness of the knock pattern. Similarly, if the “color” command is received,

the firmware will enter a function that illuminates three LEDs in sequence (red, green,

and blue), while reading the value of the photo resistor to determine the color of the

object that is near the sensor. If the correct color is detected, the servo is actuated

accordingly. These peripheral dependencies, which are typical of IoT devices necessitate

a high-fidelity emulation framework — a simple replay of these peripherals would not

suffice in exercising any of the interesting functionality of this firmware (i.e., unlocking

the door).

4.4.2 Record and Replay

First, we wanted to demonstrate that Conware is able to achieve the basic record

and replay functionality that existing system have focused on. In these experiments,

we took the example code for our test cases and compiled both an instrumented (i.e.,

logging enabled) and uninstrumented version of the firmware for each. The instrumented

version was then executed on the real hardware with us interacting with the peripheral

80

Enabling Full-system Emulation of Embedded Systems Chapter 4

(e.g., pressing buttons on the IR remote or knocking the piezo transducer) until the

record buffer was full and the recording was dumped over UART. The recording was

then converted into a linear model, and then an automaton. Replaying the linear model

is effectively equivalent to the current state of the art (i.e., Pretender [115]).

For each of these direct record-and-replay cases, both the linear graphs and gener-

alized graphs were able to replay the originally recorded firmware. However, after the

logs were exhausted (i.e., the emulation ran for more time than the original recording),

the differences were clear. In fact, without a technique like Conware, there is currently

no proposal (aside from guessing) for how to handle future execution. Nevertheless,

Conware’s state-machine-like models were able to successfully execute indefinitely. We

used the generated models to run each of the samples for 10 minutes in our emulation

framework. To enable a straightforward comparison, our emulation framework outputs

logs in the same format as our recordings. Thus, we are able to compare the accesses to

each peripheral, in order. Since our replays are deterministic and will return the same

recording every time, there is no value in running the experiments more than once.

This comparison is done by first splitting the output of each log into its respective

peripheral. For example, if 11 peripherals were observed, the log would be split into 11

separate logs where the entries for each peripheral are in sequential order. The logs for

each peripheral (i.e., the recorded log and the emulated log) are then compared directly

using sequence matching, where duplicates are treated as a single value. More precisely,

any repeats reads are effectively collated into a single entry, which ensures that the same

sequence, but not necessarily the same exact observation. This ensures that we do not

unnecessarily punish ourselves for things like status registers, which can return the same

valuable a variable number of times without impacting the code execution, but still

enforces strict order, which should only be the same if the states are advancing correctly.

The results of executing each example firmware against its own automaton is shown

81

Enabling Full-system Emulation of Embedded Systems Chapter 4

Table 4.2: A comparison of the in-order MMIO access logs of both the recorded and
emulated firmware

Firmware Conflicts Additional (%) Missing (%) Total (Emu.) Total (Rec.)
Knock 0 (0.000) 0 (0.000) 0 (0.000) 34,028 5,607
UART 0 (0.000) 0 (0.000) 0 (0.000) 653,793 222,123

Servo 0 (0.000) 0 (0.000) 0 (0.000) 949 4,571
Blink2 0 (0.000) 0 (0.000) 0 (0.000) 15,393 2,606
Blink 0 (0.000) 0 (0.000) 0 (0.000) 212,594 88,286

IR 0 (0.000) 0 (0.000) 1 (0.002) 53,955 205,977
LCD 10 (0.221) 56 (1.237) 136 (3.005) 533,997 4,506

Ethernet 0 (0.000) 1 (0.022) 16 (0.356) 153,170 4,491
Button 0 (0.000) 0 (0.000) 0 (0.000) 614,354 4,603
Color 0 (0.000) 1 (0.039) 1 (0.039) 17,237 2,570
RF RX 1 (0.001) 2 (0.002) 3 (0.004) 82,478 124,807

in Table 4.2. All but four of the firmware replayed exactly as they did in the recording.

Three of them (i.e., IR, Color, RF RX, and Ethernet had a few missing entries due to

UART buffer inconsistencies) and LCD had some executions appear out of of order due

interrupts arriving in a different order. Indeed, the differences indicate, more than the

identical comparisons, that our automaton is better than a simple replay. Somewhat

more interesting than the order of the accesses is the total number of MMIO accesses

that were observed. All but two (i.e., IR and Servo) actuated far more MMIO accesses

than were observed in the initial recording, emphasizing the power of Conware. IR, RF

RX and Servo are very MMIO heavy, which accounted for the lower number of observed

accesses since the MMIO accesses incur a larger overhead in emulation. The same one-

to-one correlation was observed beyond 10 minutes, and the values observed over UART

was also identical.

As a sanity check, we attempted to execute the firmware for Blink, which does not

use interrupts, using the model that was generated from Knock, which does, to see if the

UART peripheral would work correctly. Unsurprisingly, this emulation failed to print any

characters after the first one, since the UART status register would continually return

82

Enabling Full-system Emulation of Embedded Systems Chapter 4

BUSY, expecting the firmware the buffer them and request interrupts. This experiment

demonstrates the subtlety that must be accounted for when emulating embedded systems.

4.4.3 One Model to Emulate Them All

To demonstrate the efficacy of our technique and to quantify the compression that is

achieved by our automata-generation phase, we examined the resulting the graphs at each

step in our process. Table 4.4 shows the number of states (i.e., nodes), edges, and self-

loops for each peripheral in the case of a linear graph (i.e., the current state of the art) and

our automata graphs (i.e., after our automata-generation step), which are denoted with

a G subscript. Looking at this table, it is clear to see that our state-reduction is highly

effective, reducing the number of required states by more than 10 fold in every instance.

Again, these reductions can be made arbitrarily large by inputting longer recordings.

Moreover, this table again demonstrates the complexity of the “re-hosting problem”

(i.e., emulating embedded systems). While these examples are objectively simple, they

still require the proper emulation of multiple peripherals to execute successfully, even if

they do not explicitly use them.

The true value of our automata-generation is not to create models that can be used

beyond the recorded execution, but to create portable models by merging the recordings

from various firmware to capture the full gamut of peripheral interactions, and enabled

the emulation of any firmware. As a first step to this, we show that Conware can

generate merged models that are at least able to emulate their original recordings. This

would not be possible with simple linear models alone (i.e., Pretender) — at least a tree

would be required to encode the divergence point. Moreover, merging multiple recordings

with a simple tree would result in very large models and would be incapable of handling

a firmware that actuates a mixture of the functionality observed in multiple training

83

Enabling Full-system Emulation of Embedded Systems Chapter 4

Table 4.3: Summary of executing the various firmware on a merged model that is a
composition of their individual recordings. Example firmware emulated for 10 minutes,
smart-lock firmware executed for 60 minutes. MMIO writes, reads and peripheral-spe-
cific interrupts are reported, as well as graph traversal statistics: long jumps (took a
non-existent edge), wildcards (took a wildcard edge), BFS (performed a BFS to find
the appropriate next state)

Firmware Writes Reads Interrupts Long Jumps Wildcards BFS

Knock 14,112 15,562 3,288 6 427 13

Servo 185,067 111,791 0 3,681 16 191

Button 344,876 173,157 0 0 16 3,985

IR 228 90,179 24 0 19 0

Blink2 10,718 4,305 0 16 6,947 81

Color 1,601 1,744 226 0 36 22

Lock 795,597 1,598,900 397 136 17 26,895

recordings.

Our Knock and IR examples both read sensor values and report the value over UART.

However, these sensors are very different, and the UART output is completely divergent,

the text “Knock” versus a hexadecimal representation of the encode button press. This

made these two samples an ideal testing ground for testing the portability of our models.

When the models were merged, they were both able to emulate successfully, using the

same automaton.

With the basic functionality confirmed, we merged the models for multiple non-

overlapping peripherals (i.e., they all use different physical pins) in an attempt to create a

full-system emulation model, capable of handling any of the modeled peripherals. Specif-

ically, we created a single model using the recordings from Color, IR, Knock, Blink2

(which blinks external LEDs), Servo, and Button. These peripherals were chosen be-

cause they are all used by the smart lock firmware that is our ultimate emulation target,

thus we refer to this automaton as Lock.

Indeed, we were able to use the Lock model to successfully emulate all of the original

84

Enabling Full-system Emulation of Embedded Systems Chapter 4

Table 4.4: Summary of the complexity of both the linear and generalized graphs
for our five indicative firmware samples, showing edges, E, self-loops, L, and nodes,
N , for each peripheral. Models were generated from recordings with a 2,000 item
buffer (with compression). The columns relate to the peripheral controller that the
ARM processor interfaces with (i.e., the actual peripheral is behind by these standard
interfaces)

UART PIOA PIOB PIOC PIOD UOTGHS TC1 EEFC0 ADC PMC WDT EEFC1 Total

Name E L N E L N E L N E L N E L N E L N E L N E L N E L N E L N E L N E L N E L N

IR 304 0 305 50 0 51 25 0 26 27 0 28 22 0 23 13 0 14 8 0 9 1 0 2 10 0 11 15 0 16 1 0 2 1 0 2 477 0 489

IRG 128 10 103 7 3 3 4 2 2 4 2 2 4 2 2 4 2 2 3 2 2 1 1 1 4 1 3 10 3 6 1 1 1 1 1 1 171 30 128

Knock 963 0 964 50 0 51 391 0 392 27 0 28 17 0 18 13 0 14 - - - 1 0 2 714 0 715 12 0 13 1 0 2 1 0 2 2,190 0 2,201

KnockG 11 2 9 7 3 3 126 62 62 4 2 2 4 2 2 4 2 2 - - - 1 1 1 705 352 352 9 3 6 1 1 1 1 1 1 873 431 441

UART 552 0 553 50 0 51 31 0 32 27 0 28 17 0 18 13 0 14 - - - 1 0 2 10 0 11 12 0 13 1 0 2 1 0 2 715 0 726

UARTG 44 22 23 7 3 3 6 3 3 4 2 2 4 2 2 4 2 2 - - - 1 1 1 4 1 3 9 3 6 1 1 1 1 1 1 85 41 47

Servo 7 0 8 50 0 51 25 0 26 1,842 0 1,843 17 0 18 13 0 14 459 0 460 1 0 2 10 0 11 13 0 14 1 0 2 1 0 2 2,439 0 2,451

ServoG 1 1 1 7 3 3 4 2 2 274 137 137 4 2 2 4 2 2 203 4 69 1 1 1 4 1 3 10 3 6 1 1 1 1 1 1 514 158 228

Button 7 0 8 50 0 51 2,451 0 2,452 27 0 28 17 0 18 13 0 14 - - - 1 0 2 10 0 11 13 0 14 1 0 2 1 0 2 2,591 0 2,602

ButtonG 1 1 1 7 3 3 813 406 406 4 2 2 4 2 2 4 2 2 - - - 1 1 1 4 1 3 10 3 6 1 1 1 1 1 1 850 423 428

Blink 366 0 367 50 0 51 505 0 506 27 0 28 17 0 18 13 0 14 - - - 1 0 2 10 0 11 12 0 13 1 0 2 1 0 2 1,003 0 1,014

BlinkG 4 2 2 7 3 3 6 3 3 4 2 2 4 2 2 4 2 2 - - - 1 1 1 4 1 3 9 3 6 1 1 1 1 1 1 45 21 26

RF RX 97 0 98 50 0 51 25 0 26 57 0 58 52 0 53 13 0 14 - - - 1 0 2 10 0 11 15 0 16 1 0 2 1 0 2 328 0 340

RF RXG 32 2 27 7 3 3 4 2 2 12 6 6 15 7 7 4 2 2 - - - 1 1 1 4 1 3 11 4 6 1 1 1 1 1 1 95 32 61

LCD 7 0 8 50 0 51 25 0 26 2,029 0 2,030 759 0 760 13 0 14 - - - 1 0 2 10 0 11 12 0 13 1 0 2 1 0 2 2,908 0 2,919

LCDG 1 1 1 7 3 3 4 2 2 135 39 39 103 50 50 4 2 2 - - - 1 1 1 4 1 3 9 3 6 1 1 1 1 1 1 270 104 109

Ethernet 74 0 75 65 0 66 25 0 26 33 0 34 17 0 18 13 0 14 - - - 1 0 2 10 0 11 13 0 14 1 0 2 1 0 2 1,189 0 1,201

EthernetG 32 2 26 7 3 3 4 2 2 4 2 3 4 2 2 4 2 2 - - - 1 1 1 4 1 3 10 3 6 1 1 1 1 1 1 524 21 395

Blink2 7 0 8 50 0 51 205 0 206 1,080 0 1,081 17 0 18 13 0 14 - - - 1 0 2 10 0 11 12 0 13 1 0 2 1 0 2 1,397 0 1,408

Blink2G 1 1 1 7 3 3 64 31 31 72 36 36 4 2 2 4 2 2 - - - 1 1 1 4 1 3 9 3 6 1 1 1 1 1 1 168 82 87

Color 375 0 376 50 0 51 30 0 31 477 0 478 17 0 18 13 0 14 - - - 1 0 2 56 0 57 13 0 14 1 0 2 1 0 2 1,034 0 1,045

ColorG 11 2 9 7 3 3 4 2 2 55 18 19 4 2 2 4 2 2 - - - 1 1 1 47 23 23 10 3 6 1 1 1 1 1 1 145 58 69

K+ir 1,260 0 1,261 50 0 51 391 0 392 27 0 28 22 0 23 13 0 14 8 0 9 1 0 2 1 0 2 15 0 16 1 0 2 714 0 715 2,503 0 2,515

K+irG 122 11 105 7 3 3 126 62 62 58 29 29 4 2 2 4 2 2 3 2 2 1 1 1 1 1 1 10 3 6 1 1 1 704 352 352 1,041 469 566

lock 1,628 0 1,629 50 0 51 396 0 397 3,333 0 3,334 22 0 23 13 0 14 467 0 468 1 0 2 1 0 2 18 0 19 1 0 2 760 0 761 6,690 0 6,702

lockG 151 11 111 7 3 3 126 62 62 723 354 354 4 2 2 4 2 2 329 38 132 1 1 1 1 1 1 12 4 6 1 1 1 751 375 375 2,110 854 1,050

PIO - Parallel Input/Outputs UOTGHS - USB OTG High Speed TC - Timer Counter EEFC - En-
hanced Embedded Flash Controller
ADC - Analog-to-Digital Converter PMC - Power Management Controller WDT - Watchdog Timer

firmware. Given the added complexity of these graphs, it is reasonable to assume that

some state transitions may no longer be as straightforward. To investigate exactly “how”

the model was emulating these firmware, we kept track of every MMIO interaction and

the effect that it had on the graph traversal. Table 4.3 enumerates the various non-

standard transitions (i.e., state transitions that did not have an immediately available

edge from the current state). We define long jumps as a state transition that had to

temporarily create a new transition (i.e., the destination node was not reachable from

the current node). The edge selection process is prioritized by locality and the number

of edges that were merged to create the selected edge (i.e., how many times that specific

85

Enabling Full-system Emulation of Embedded Systems Chapter 4

state transition was observed). Wildcards are edges that our algorithm deemed safe to

accept any value (e.g., the TX buffer in a UART controller). Finally, BFS transitions

occur when the existing transition is not valid but a BFS through the graph was able to

locate an acceptable edge. Fallback transitions were uncommon when emulating any of

the initial firmware, as their recordings were used to generate the automata.

In Table 4.3, both Blink2 and Knock observed multiple wildcard traversals due to

their heavy usage of UART, which lends itself well to this. The 3,000+ long jumps in

Servo are due to an interrupt handler accessing a memory address that was not available

in the current state (i.e., there was no sub-model for it). This is due to the fact that the

emulated interrupts do not happen at the exact time that they were observed in in the

recording. Nevertheless, the long jump selects a satisfactory node every time, and the

execution continues correctly. This same phenomena occurred in the UART controller

for Blink2 and Knock, since the UART automaton is capable of supporting any of the

interactions that were previously observed. Likewise for the multiple BFS traversals that

were required.

4.4.4 Emulating Arbitrary Firmware

Finally, we exhibit Conware’s ability to emulate a complete new firmware that was

never seen in the training data. The hobbyist smart door lock program that we selected

permits users to unlock the door by a knock pattern, a personal identification number

(PIN) entered on the IR remote, or by presenting a specific color. In our recordings

with the initial peripherals, we input sequences that would be accepted by the smart

door firmware. However, these inputs could be replaced by a fuzzer, for example, in

a straightforward way [18, 115, 116]. This particular firmware would require 13 wires

to be connected to the Arduino and has 11 different physical peripherals, making it a

86

Enabling Full-system Emulation of Embedded Systems Chapter 4

non-trivial emulation target. Nevertheless, we were able to emulate the firmware our

Lock model (i.e., the automaton that was created from the individual recordings of the

various peripherals using Arduino’s included example code). Surprisingly, we observed

zero failed reads or writes (i.e., there were no reads or writes that our model was not

able to handle). Verifying that our models worked “correctly” is not straightforward,

since our goal is survivability of execution as opposed to a perfect representation. Thus,

we first used high-level metrics, such as UART output, which this firmware had, and the

distribution of MMIO accesses. In fact, the UART out was one-to-one identical as when

we built and ran the real firmware.

To ensure that the peripherals were actually facilitating this interaction, and that

our models were not just getting “lucky,” we logged every MMIO accesses that the

Lock firmware exercised and compared it to the peripheral recordings. Indeed, after

aggregating all of the MMIO accesses from the recordings of each peripheral on the real

hardware (using example code) and comparing the accesses to the execution of the Lock

firmware we found that the same interrupts were fired, only five MMIO addresses (out of

94) were in the training data that were not observed in the recording. Indeed, these five

addresses where all associated with the servo — specifically the PIOB controller and a

PIO Pull Up Register. This makes sense, because the servo example code would increment

the servo one degree at a time to move the motor slowly between every position, while the

Lock only had an “on” and “off” position, which requires far less interaction. Moreover,

we found that 348 of the address-value pairs were observed in the recording were also

observed in emulation. In fact, 35 new unique address-value pairs where observed, while

375 pairs were never exercised by Lock.

Finally, we wanted to ensure that our peripherals were actually causing the firmware

to execute most of its code (versus an error handler or a simple surface-level function).

To measure this, we used QEMU’s trace feature to record every basic block and function

87

Enabling Full-system Emulation of Embedded Systems Chapter 4

that was executed in the emulator. While the emulated firmware executed 738 unique

basic blocks in the firmware, it was unclear if these were “interesting” basic blocks (i.e.,

executing notable functionality). Thus, we used angr [137], a popular binary analysis

platform, to identify every basic block (609 in total) and function entry point (68 in total)

that was reachable from the loop() function (the main function in Arduino firmware).

This list was then compared against the execution trace from QEMU, revealing that

the emulation executed 362 (59%) of those basic blocks and 58 (85%) of the functions.

Indeed, these were not superficial functions either. The maximum depth of the call stack

originating from loop(), as discerned by angr, was six. The emulation results are shown

in Table 4.5.

Table 4.5: Depth of call graph executed in emulation for Lock (the maximum possible is 6)

Depth of Function 0 1 2 3 4 5 6
Number of Functions Executed 1 6 21 17 21 7 4

These measurements demonstrate that Conware is not only able to emulate firmware

so that it survives, but that our models are successfully coning the firmware into executing

its full functionality.

4.5 Discussion and Future Work

While this work makes many advances in peripheral emulation, there are still many

avenues that we believe will provide interesting future research. First, it is likely possible

to make even more concise automata by relaxing the comparison of Pattern sub-models

to permit more generalized states. For example, it does not matter how many times BUSY

is returned, but it does matter how many times a 1 is returned in an encoding scheme.

Using re-enforcement learning or binary analysis to infer these cases could greatly im-

prove modeling. Similarly, accurately correlating interrupts to the specific write that

88

Enabling Full-system Emulation of Embedded Systems Chapter 4

triggered them, versus the state transition, makes more sense for some peripherals (e.g.,

UART). Indeed, we wrote a script to simply (≈ 10 lines of Python) to disable buffering

on our UART controller for debugging purposes. Methods for automatically detecting

when these correlations do and do not hold will likely lead to more accurate emulation.

Finally, while we do not see never-before-seen reads and writes in our evaluation, this

scenario is inevitable. Employing a method that leverages static analysis to deduce ap-

propriate reactions, and modifying the automata (i.e., perform on-the-fly static analysis

to construct a suitable response) appropriately sounds particularly fruitful.

4.6 Conclusion

The ability to emulate a system for analysis is critical for most security analyses, and

yet this critical tool is completely absent form the world of embedded systems, despite

importance of securing these prolific systems. In this work we present Conware, a sys-

tem that is capable of automatically modeling hardware peripherals used by embedded

systems and using these models to facilitate full-system emulation. Conware is a com-

plete suite of software that facilitates recording peripheral interactions on real hardware,

generating high-fidelity models from these recordings, and emulating firmware using pop-

ular emulation frameworks (e.g., QEMU and Avatar2). Conware’s differentiator is that

it is able to merge recordings in a pluggable way, enabling analysts to generate models

based on one (or more firmware) recording and then use those models to execute a com-

plete different firmware. This is critical to facilitate the emulation of firmware for systems

that may not have debugging interfaces or that are executed on prohibitively expensive

or elusive hardware. Conware was tested against various popular peripherals and was

able to successfully emulate all of them. Moreover, we demonstrated Conware’s abil-

ity to emulate a black-box firmware sample by merging six independent models, which

89

Enabling Full-system Emulation of Embedded Systems Chapter 4

were generated using the sample code that accompanies each peripheral, to create an

emulation environment that was suitable for the new, never-before-seen, firmware.

90

Chapter 5

Protecting Embedded Systems from

Physical Attacks

5.1 Introduction

Hardware-induced faults [138], which we refer to as glitches, are capable of corrupt-

ing the system state by modifying both instructions and data, and can be leveraged

to undermine software-based security mechanisms, even if the software security mecha-

nisms are implemented with no semantic vulnerabilities. Indeed, malicious glitches have

been leveraged to compromise secure smartcards [31–33], security-hardened gaming con-

soles (e.g., the XBOX 360 [34], Playstation 3 [35], Playstation Vita [36], and Nintendo

Switch [37,38]), and enterprise IP phones [39]. Glitching attacks have even been leveraged

to bypass both Intel’s SGX protections [41] and ARM’s TrustZone [42] and even extract

hardware-embedded cryptographic keys [40]. However, little has been done to adequately

study and defend against these types of attacks in practice. Some code-level glitching

mitigations [139] have been proposed, but have not had their underlying assumptions

or efficacy evaluated on real-world systems. Alternatively, custom-built hardware-based

91

Protecting Embedded Systems from Physical Attacks Chapter 5

counter-measures (e.g., brownout detection or lock-step computation) [140] are currently

only sparsely deployed, due to cost and complexity, leaving the majority of embedded

systems susceptible to glitching attacks.

Glitching attacks involve introducing a physical disturbance to a system that will

ultimately corrupt the instructions being executed or the data being manipulated. This

corruption can be achieved by changing the supply voltage [141, 142], optical probing

with lasers [143,144], disrupting the clock [145], or introducing an electromagnetic pulse

(EMP) [146,147]. To leverage these faults in a successful attack, the fault must be injected

at a specific time in the execution pipeline. For example, if the execution was corrupted

precisely when a security-critical branch condition was being checked (e.g., checking the

kernel’s signature [148]), that instruction could be changed to a no operation instruction,

and effectively skipped, allowing the attacker to disable secure boot [39, 149], escalate

privileges [150], or extract “protected” code [36].

While effective defenses against other physical attacks are becoming commonplace

in commodity computing systems (e.g., trusted boot and encrypted memory), glitching

defenses are still lacking. We hypothesize that this is likely due to a general lack of

understanding about what exactly glitching attacks are capable of, and, subsequently, a

systematic way to implement defenses against them. Indeed, we have observed a large dis-

connect between theory and practice in this field. For example, many researchers believe

that glitching is capable of changing any pointer (e.g., the program counter) in mem-

ory or making arbitrary code modifications because of published papers demonstrating

this [150–152]. However, these effects are only realistic in laboratory environments with

systems that are very-well understood and have already had the appropriate glitching

parameters “tuned.” For all intents and purposes these types of attacks are impossible

in practice.

In this work, we introduce an open-source QEMU-based glitching emulation envi-

92

Protecting Embedded Systems from Physical Attacks Chapter 5

ronment. This framework was used to exhaustively evaluate an ISA’s instruction en-

coding against specific glitching effects (e.g., bit flips), and examine the result of those

instruction-level effects against a program’s control flow. These flipped bits ultimately

change the instruction being executed or the data being evaluated in a way that is benefi-

cial to the attacker. In fact, our analysis confirmed that by simply flipping bits, the glitch

can effectively “skip” an instruction with a high likelihood (i.e., changing the targeted

instruction into a no operation). We also found that this effect is often non-uniform.

For example, on 16-bit ARM processors, glitches that tend to flip bits from 1 to zero

appear to be exceptionally powerful (i.e., “skipping” all branch instructions more than

60% of the time), while glitches that flip zeros to ones were less so (i.e., “skipping” branch

instructions less than 30% of the time).

In addition to emulating glitches, we also used a popular glitching tool (i.e., the

ChipWhisperer [153]) to conduct a suite of real-world glitching experiments to examine

the effects of glitching on critical program elements (i.e., control-flow-related instructions

and data). In particular, our experiments were focused on using glitching to evade guard

conditions. This evasion could be used to bypass security-critical code (e.g., verifying

signed code, disabling a debug interface, or checking user permissions). Our real-world

glitching results provide new insights into how this corruption ultimately affects control

flow. For example, load and store instructions appear to be more susceptible to glitching;

the value being compared affects the glitchability of a branch condition (e.g., while(!a)

is more vulnerable than while(a)); and instructions which simply manipulate registers

(e.g., addition) appear to be exceptionally difficult to glitch. We leverage these findings

to build our defense framework.

We present the first automated, open-source glitching defense framework, GlitchRe-

sistor, which is capable of adding various glitching defenses at compile time to any

source code in an architecture-independent way. GlitchResistor implements numer-

93

Protecting Embedded Systems from Physical Attacks Chapter 5

ous proposed glitching defenses (e.g., double checking branches and loop guards, injecting

random timing, and integrity checking on sensitive variables). We used GlitchResis-

tor, combined with our ChipWhisperer-based glitching framework to evaluate the ef-

ficacy of these defenses in practice, examining their ability to thwart glitching, as well

as the size and runtime overheads that each incurs. GlitchResistor was able to suc-

cessfully defend against, and detect, every single-glitch attack that we attempted in our

evaluation, necessitating a successful multi-glitch attack (i.e., a glitch that affects mul-

tiple clock cycles) to evade the implemented defenses. Even so, GlitchResistor was

able to reduce the success rate of our most powerful, multi-glitch attack to 0.263% in

the worst case and 0.00306% in the best case, with detection rates of 79.2% and 99.7%

respectively.

In summary, we make the following contributions:

• a comprehensive analysis of glitching attacks and their effects on control flow,

• a framework for emulating glitching attacks,

• a breadth of glitching experiments that characterize the effects of glitching and

demonstrate the effectiveness of various software-only defenses,

• GlitchResistor, the first extensible glitching defense tool for automatically pro-

tecting vulnerable code, and

• an evaluation of GlitchResistor on real-world hardware, which demonstrates

the effectiveness of software-only defenses, minimizing the likelihood of a successful

attack and effectively detecting all glitching attempts in practice (https://github.

com/ucsb-seclab/glitch-resistor).

94

https://github.com/ucsb-seclab/glitch-resistor
https://github.com/ucsb-seclab/glitch-resistor

Protecting Embedded Systems from Physical Attacks Chapter 5

5.2 Background

Fault injection is well-studied in the context of ensuring the reliability of a com-

puter system [138]. Both software [154] and hardware [155] induced faults are capable

of modifying the state of a system and disrupting its typical execution. Indeed, the act

of inducing malicious software faults, which materialize as software bugs and vulnerabil-

ities, has spawned an entire subfield of bug finding [156] and fuzzing techniques [157].

In contrast to software faults, malicious software-induced hardware faults were widely

ignored by the software community until the relatively recent exposure of Spectre [158]

and Meltdown [159] (microarchitecture attacks) and Rowhammer [160, 161], an attack

against dynamic random access memory (DRAM). Malicious physical hardware-induced

faults are still relatively unexplored.

Hardware-based attacks can be done either invasively (e.g., decapsulating the chip [125])

or non-invasively (e.g., through electromagnetic interference [162]). Non-invasive glitch-

ing techniques allow an attack to go undetected and typically permit the attacker to

repeat the attack indefinitely. The general idea behind glitching is to interfere with the

normal operation of a Flip-Flop circuit, transistor, or capacitor, to change the stored

value or the output of an execution. This can be done using any form of interference,

be it an external physical phenomena, like temperature or electromagnetic (EM) inter-

ference, or by operating the system outside its designed conditions (e.g., by modifying

the voltage or clock). In practice, voltage glitching, which is done by either increasing

or decreasing the voltage for a brief period of time, and clock glitching, which involves

inserting additional clock edges, are the most common glitching techniques, due to their

relatively low cost and their effectiveness.

In this work, we only examine non-invasive attacks, as defenses against invasive at-

tacks necessarily require hardware modifications. For those who are interested in the

95

Protecting Embedded Systems from Physical Attacks Chapter 5

Trigger Offset Width

Offset

Figure 5.1: The three parameters that need to be tuned for clock glitching: the offset
from the trigger, the offset into the clock cycle, and the width of the injected clock
cycle

specific effects of each type of non-invasive glitch, we refer to reader to Section 5.3).

5.2.1 Motivation

Glitching attacks have already been used to attack numerous commercial systems. For

example, researchers were able to use glitching to defeat the security on two automotive

safety integrity level (ASIL)-D1 compliant automotive microcontroller units (MCUs) [44],

evading hardware-based countermeasures like Flash error-correcting code (ECC) and

lockstep execution, using EM and voltage glitching, respectively. The same researchers

were also able to bypass authentication checks, and even re-enable the JTAG interface.

Similarly, voltage glitching has also been used to extract both Rivest, Shamir, and Adle-

man (RSA) [163, 164] and advanced encryption standard (AES) [40, 165] keys, and has

even been shown to be effective against programs executing on modern Android phones

and the Raspberry Pi, both running Linux [166]. More powerful attacks have even been

able to control the program counter (PC) directly with glitching [151, 152]. In the case

of defeating a secure boot loader, which has a relatively small attack surface and takes

little or no user input, glitching attacks are one of the only methods for compromising

the boot loader’s security.

1The most stringent ASIL requirements of safety and fault tolerance.

96

Protecting Embedded Systems from Physical Attacks Chapter 5

cmp r0, r5
beq .good
mov r0, 0xdead
.good:
mov r1, 0xaaaa

0x050050e1
0x0000000a
0xad0e0de3
0xaa1a0ae3

Source Assembled
Code

Bitmasks
(1 to N flips)

0x050050e1
0x********
0xad0e0de3
0xaa1a0ae3

Perturbed
Code

Emulator Results

0x00000000
0xffffffff

0x********

AND

OR

Figure 5.2: Depiction of our emulation framework for evaluating various corruption
models (e.g., OR and AND).

5.2.2 “Tuning” the Glitch

All glitching techniques necessarily require a “tuning” phase where the location and

specific glitching parameters are tweaked until the desired effect is achieved. The attacker

must first figure out when to inject the glitch, by calculating an offset from a known

trigger (i.e., an observable artifact that indicates which code is currently executing). For

example, to inject a clock glitch, an attacker must simultaneously configure both the

width and location in the clock cycle to inject a glitch, as well as the offset from an

observable trigger (see Figure 5.1). Similar parameters must be tuned for both voltage

and EM glitches (e.g., the duration and voltage of the attack or the location and intensity

of the EMP).

In our ideal laboratory environment with a perfect trigger, we were able to consis-

tently, and automatically, tune our clock glitching parameters and successfully glitch an

unprotected embedded system 100% of the time (10 out of 10 attempts) in less than

16 minutes, in the best case. However, this is only possible in practice with an initial

search over the parameter space, which is the exact step that our evaluated defenses are

targeting.

97

Protecting Embedded Systems from Physical Attacks Chapter 5

5.2.3 Defenses

Hardware-based defenses typically involve inserting additional circuits (e.g., to detect

voltage glitches [167]), an additional run-time monitor [168,169], or CFI signatures [170,

171]. However, hardware modifications are impractical for the many already-deployed

IoT devices. They are also far less likely to be adopted for individual systems, due to

the lead times on hardware fabrication. Therefore, software-based techniques are more

likely to be useful as practical defenses.

Software-based glitching defenses can never completely mitigate the problem. In

the limit, glitching could (in theory) be used to skip every defensive instruction and

even transform benign instructions into malicious ones. Nevertheless, software-based

techniques are cheaper to implement and can be effective at defending against real-

world attacks (in practice) by making the required scenario for a successful glitching

attack increasingly improbable. Unfortunately, existing techniques, which rely on redun-

dancy [172], only work on simple code-bases and have simplistic attacker models, which

makes them infeasible on real-world code.

5.3 Glitching Effects

In this section we summarize and formalize the effects from each type of non-invasive

glitching technique that have been reported in open literature (see Table 5.1). Recall

that most processors, including embedded systems, use an execution pipeline to optimize

their CPU usage. The most basic form consists of four stages, which each instruction

passes through: fetching the instruction from memory, decoding the instruction so that

it can be executed, actually executing the instruction, and finally storing the result

in the writeback phase. A glitch could be injected during any one of these phases,

and the result will vary depending on which stage was targeted. Moreover, full system

98

Protecting Embedded Systems from Physical Attacks Chapter 5

Table 5.1: Summary of the high-level effects that can be induced by various glitching
techniques

Glitch Type

Effect Voltage Clock EM

In
st

ru
ct

io
n
s

Corrupt individual instruction X X X

Repeat previous instruction X

Corrupt, or repeat, instructions indefinitely X

Repeat previous n instructions, skipping n X

D
a
ta Corrupt memory-related operation X X X

Corrupt data in memory X

glitching techniques (e.g., voltage glitching) can affect numerous instructions at once, but

at different stages of the pipeline. For example, a single glitch on the system depicted in

Figure 5.3 could, in theory, corrupt the write back of instruction one, the execution of

instruction two, the decoding of instruction three, and the fetching of instruction four.

In practice, voltage glitching appears to be more effective against the instruction fetch

stage [173], whereas electromagnetic fault injection (EMFI) is more effective against the

execution and writeback stages [174].

Voltage. Glitching the voltage of a system is one of the cheapest, most straightforward,

and effective methods of glitching. It is capable of corrupting individual instructions [151,

163] (i.e., transforming them into different instructions) and corrupting data that is being

written to, or read from memory [163]. Likely due to the fact that voltage glitching is

typically done by decreasing the voltage, others have observed that a voltage glitch

typically flips 1s to 0s when it corrupts an instruction or data item [173,174]. Due to the

system-wide nature of voltage glitching, has the potential to corrupt unrelated registers

and instructions [173], and appears to be more successful on power-hungry operations

(e.g., memory loads or stores). However, voltage glitches by nature must be very brief

99

Protecting Embedded Systems from Physical Attacks Chapter 5

executefetch decode writeback

executefetch decode writeback

executefetch decode writeback

executefetch decode writeback

Corrupted Instruction Corrupted Result

Figure 5.3: Example of a simple instruction pipeline with glitching effects called out
for each stage

(e.g., two rising clock edges [175]), as most chips have brownout detectors, or will simply

turn off if the voltage is too low for too long. Similarly, supplying too much voltage can

permanently damage the chip being glitched.

Clock. Glitching the clock is the most powerful non-invasive attack, as it can affect

individual clock cycles, and thus inject very precise glitches. Previous work [175] has

shown that clock glitching is capable of affecting every phase of the pipeline, with the

following observed effects: invalid or zero result for arithmetic operations, invalid memory

reads and writes (i.e., the result containing zero, the address instead of the value, or a

random value), and freezing the instruction buffer from being updated (i.e., repeating

the previous instruction). Because of the nature of the attack, an invalid clock edge

could potentially be injected at every clock cycle, which means that this type of attack

could be used to skip, or corrupt, an indeterminate number of instructions. Some have

claimed the effects to be identical to voltage glitching [176], and they can, indeed, be

combined to increase the overall success rate of an attack [175]. However, clock glitching

does not appear to permit arbitrary corruptions [145]. Instead, the corruptions tend to

be a mix of the previous instruction, or data, and the current, glitched, instruction (e.g.,

1100↔ 0100↔ 0000↔ 0001↔ 0011).

100

Protecting Embedded Systems from Physical Attacks Chapter 5

EM. EMFI attacks are the least invasive (requiring only a probe to be placed next to

the chip) and yet are still effective in practice, with success rates of up to 96% [177] in a

laboratory setting. The specific effects demonstrated in previous work [147,174] include:

invalid arithmetic operations, corrupt instructions, and corrupt memory operations. The

most powerful EM attack demonstrated was able to effectively freeze the instruction cache

and repeat the previous four instructions, effectively skipping the next four instructions,

while still incrementing the PC. When glitching during load and store operations (i.e.,

fetch) with Flash memory on a Cortex-M3 processor, researchers were able to reliably

flip bits from 0 to 1, where a higher voltage resulted in more bit flips [147] (they did not

see any cases of 1s flipping to 0s). EMFI attacks can achieve the same effects as clock

or voltage glitching (e.g., corrupting a single instruction or data), but with more locality

and without much collateral damage [146]. Similarly, when the execute and writeback

stages were targeted, EMFI also appears to be able to flip 0s to 1s [174]. Finally, unlike

other glitching attacks, EM interference is capable of changing the state of memory that

is not currently being acted upon [39,161].

Temperature. Temperature glitching is done by operating a component outside of its

temperature threshold, which can result in undocumented behavior. This technique can

be used on its own to induce faults [178], but is likely more useful when coupled with

other glitching techniques to increase their success rates [149,179].

5.4 Threat Model

Non-invasive glitching attacks require physical access to the device being glitched and

control over the specific input being glitched (e.g., the voltage line, clock line, or access

to microchip). An attacker can dismantle any external packaging (e.g., remove the case

101

Protecting Embedded Systems from Physical Attacks Chapter 5

containing the electronic components), but cannot modify the electronic components in

any non-reversible way. For example, an attacker may solder a wire to a specific pin

to bypass a voltage regulator, but cannot remove or modify the integrated circuit (IC)

directly.

This threat model is realistic for any deployed embedded system: IoT devices, gaming

systems, automobiles, robots, or military drones. The goal is typically to either bypass

a secure check in the firmware or extract the firmware image for reverse engineering. As

previously mentioned, the system must necessarily have some externally observable trig-

ger to create a reliable glitch (e.g., a voltage dip, an observable output, or a request for

user input). In the various high-profile glitching attacks against gaming systems [34–38],

the exploits were crafted by first identifying the approximate area that appeared to be

vulnerable (e.g., right before an error code) and then tuning the glitching parameters

(e.g., clock waveform, voltage modification, or EM power and position). No two sys-

tems are physically identical, which means that each attack must be specialized for the

specific system being attacked. Even commercialized attacks (e.g., the XBOX reset at-

tack) are typically probabilistic, due to physical limitations, and have some method for

automatically retrying the glitch in the event of a failure.

5.5 Glitching Effects in Emulation

To gain a better understanding of how glitches affect the system, we first investigate

the following research question:

RQ1 What is the likelihood that random bit flips will result in a “skipped” control-flow

instruction?

To quantify the effects of bit flips on a specific ISAs, we built an emulation framework

that is capable of forcing bit flips (i.e., corrupting specific instructions) and executing

102

Protecting Embedded Systems from Physical Attacks Chapter 5

0x0000 Unmodified
of 1s in Bitmask

0

20

40

60

80

100

S
u

cc
e

ss
 R

a
te

 (
%
)

BVC

BGE

BVS

BEQ

BLT

BCC

BLE

BLS

BHI

BMI

BGT

BCS

BPL

BNE

B
LT

B
V
S

B
M
I

B
H
I

B
LE

B
E
Q

B
C
C

B
G
T

B
G
E

B
V
C

B
LS

B
N
E

B
P
L

B
C
S

Instruction

0

20

40

60

80

100

P
e
rc
e
n
ta
g
e
 o
f
R
e
su
lt
s
(%

)

Success

Bad Read

Bad Fetch

Failed

No Effect

(a) AND

Unmodified 0xFFFF
of 1s in Bitmask

0

20

40

60

80

100

S
u
cc

e
ss

 R
a
te

 (
%
)

BVC

BGE

BVS

BEQ

BLT

BCC

BLE

BLS

BHI

BMI

BGT

BCS

BPL

BNE

B
M
I

B
C
S

B
G
E

B
G
T

B
LS

B
N
E

B
E
Q

B
V
S

B
V
C

B
LE

B
C
C

B
P
L

B
H
I

B
LT

Instruction

0

20

40

60

80

100

P
e
rc
e
n
ta
g
e
 o
f
R
e
su
lt
s
(%

)

Success

Bad Read

Invalid Instruction

Bad Fetch

Failed

No Effect

(b) OR

0x0000 Unmodified
of 1s in Bitmask

0

20

40

60

80

100

S
u

cc
e

ss
 R

a
te

 (
%
)

BVC

BGE

BVS

BEQ

BLT

BCC

BLE

BLS

BHI

BMI

BGT

BCS

BPL

BNE

B
LT

B
V
S

B
M
I

B
H
I

B
LE

B
E
Q

B
C
C

B
G
T

B
G
E

B
V
C

B
LS

B
N
E

B
P
L

B
C
S

Instruction

0

20

40

60

80

100

P
e
rc
e
n
ta
g
e
 o
f
R
e
su
lt
s
(%

)

Success

Bad Read

Invalid Instruction

Bad Fetch

Failed

No Effect

(c) AND (0x0000 Invalid)

Figure 5.4: The probability of a glitch succeeding on ARM Thumb as a function of the
number of bits that were flipped and how they were flipped, i.e., 1s to 0s (AND) or 0s
to 1s (OR), computed by taking every possible combination, i.e.,

(
n
k

)
, of bits for each

flip value and creating a bit mask that was either ANDed or ORed with the original
instruction. The reasons for the failures are shown in the accompanying histograms.

103

Protecting Embedded Systems from Physical Attacks Chapter 5

the resulting code to determine the effects on the control flow of the program. Previous

literature [145,147,151,173,175,177] indicates that bit flips induced by glitching tend to

be unidirectional (i.e., either flipping 1s to 0s or 0s to 1s, but not both). While complex

bit flips are possible, they are improbable in practice [151]. Therefore, we only consider

unidirectional flips for our evaluation (i.e., logical and and or operations).

We implemented our glitch emulator using Unicorn [180] for CPU emulation, Cap-

stone [181] for disassembling code, and Keystone [182] for assembly. All of our test cases

are manually written for the instruction in question such that a successful glitch (i.e., the

targeted instruction was skipped) will place the value 0xdead in a known register, and

a normal execution will place the value 0xaaaa in a separate known register. Because

these snippets of code are so small (e.g., 3-5 lines of assembly), we are able to completely

isolate the instruction in question. Our automated framework takes this source code,

assembles it to machine code, and then generates every possible bit mask for every pos-

sible number of bits. More precisely, it produces
(
n
k

)
possible bit masks for each k, where

n is the number of bits in the instruction and k is the number of bits being mutated.

These bit masks are then either ANDed or ORed with the target instruction and then the

entire program is executed in an emulator. Upon completion, the register values and

error codes are read to log the result (i.e., a successful glitch or the reason that it failed).

This entire pipeline can be seen in Figure 5.2.

We used this framework to quantify the effects of glitching on the popular 16 bit

ARM Thumb architecture. While it can also be used to enumerate the effects of 32 bit

architectures, we did not have access to the appropriate resources at the time of writing

to enumerate these effects (the experiments are already constructed for both ARM and

MIPS 32 bit and will be released with the source code). For example, a 32 bit exhaustive

search would require
∑32

k=0

(
32
k

)
= 232 emulations. The results for every conditional

branch instruction in ARM Thumb under the AND and OR perturbation conditions can be

104

Protecting Embedded Systems from Physical Attacks Chapter 5

seen in Figure 5.4. In these figures, a glitch is considered a “success” if the instruction

immediately following the conditional branch, which would otherwise not be executed,

was executed successfully. The failures are grouped in the following way: a bad read is

when the system attempted to read unmapped memory; an invalid instruction is thrown

when the emulator did not recognize the perturbed instruction; a bad fetch is thrown

when an instruction was fetched from unmapped memory (e.g., the PC was modified);

an unknown failure is any unrecognized error; and, if the modification had no effect on

the execution of the code, we annotate it as such.

One immediate observation is that the AND model exhibits a substantially higher

success rate than the OR model. Initially we hypothesized that this was because in our

experiments, the conditional branches had a relatively low hamming weight (e.g., beq

#6 is repressed as 0b1101 0000 00000000 [183]), and thus converting them all to zeros,

which is interpreted as mov r0, r0 (or no operation) in ARM Thumb, was highly likely.

However, after modifying our emulator to interpret all 0s as an invalid instruction, which

is already the case for all 1s, this hypothesis was quickly debunked. The overall success

rate for most of the bit masks were effectively unchanged (see Figure 5.4). Thus, it

appears that the ISA itself is simply vulnerable to glitches that are capable of flipping

1s to 0s, which is also unfortunately the most likely effect of the cheaper, more popular,

forms of glitching (i.e., voltage and clock). Nevertheless, in practice, we hypothesize that

this minor modification to the ISA could pay large dividends. Similarly, adding invalid

instructions in between valid instructions would likely thwart many glitching attempts.

However, the only way to test these hypotheses would be to fabricate a microchip with

a modified ISA, which is out of scope for this work.

105

Protecting Embedded Systems from Physical Attacks Chapter 5

Table 5.2: The number of successful glitches for each clock cycle, mapped to the
respective instruction that was executing and with a post-mortem view of the com-
parator register

Cycle Instruction Successes R3 Count

0 MOV R3, SP 44

0 44
8 32

0x21 33
0x68 1

1 ADDS R3, #7 9
8 8

0xFF 1
2

LDRB R3, [R3]
- - -

3 18 0 18

4 CMP R3, #0 43

0 1
8 37

0x55 2
0x20003FE8 3

5

BEQ .loop

89
8 41

0x55 4
0x20003FE8 44

6 133

8 49
0x55 3

0x20003FE8 73
0x20003FEF 2
0x28004309 6

7 183

0 41
8 102

0x20003FE8 36
0x28004309 1
0x40007FD7 1
0xDFFFC010 1
0xFFFFFFF9 1

Total 553 (0.705%) 12 unique

(a) while(!a), R3=0x1000 initially

Cycle Instruction Successes R3 Count

0 MOV R3, SP 84

0 11

1 38

0x55 33

0x68 1

0xFF 1

1 ADDS R3, #7 14
0 4

0x55 10

2
LDRB R3, [R3]

- - -

3 - - -

4 CMP R3, #0 - - -

5

BNE .loop

9 0 9

6 39
0x55 32

0x20003FF6 1

7 126

0 4

1 39

8 1

0x55 82

Total 272 (0.347%) 7 unique

(b) while(a), R3=0x1000 initially

Cycle Instruction Successes R2 Count

0
LDR R2,[SP,#0x10+a]

25

0 1

0x4EE6BB18 1

0xE7D25763 23

1 - - -

2
LDR R3,=0xD3B9AEC6

- - -

3 1 0xE7D25763 1

4 CMP R2, R3 1 0xD3B9AEC6 1

5

BNE .loop

46
0xD3B9AEC6 1

0xE7D25763 45

6 150

0x40 2

0x400 2

0xE7D25722 1

0xE7D25763 145

7 129

0x40 1

0x400 1

0xE7D25763 127

Total 352 (0.449%) 7 unique

(c) while(a!=0xD3B9AEC6),
R2=0x48000028, R3=0x1000

106

Protecting Embedded Systems from Physical Attacks Chapter 5

5.6 Real-world Glitching

To glean insights into real-world glitching effects, we employed the popular open-

source ChipWhisperer Lite, a suite of hardware and software tools that enable glitching

and side-channel analysis. In our experiments, we wanted to evaluate the upper bound

of glitching effectiveness (i.e., the best case scenario for an attacker, and the worst case

scenario for the system being glitched). Therefore, we used the STM32F071RBT6, a 48

MHz ARM Cortex M0 chip with a 3-stage pipeline, as our target board, and drove the

clock directly from the ChipWhisperer (i.e., the most powerful glitching attack proposed

by previous work). Similarly, we created a perfect trigger for each instruction sequence

that we wanted to glitch. More precisely, our trigger would apply voltage to a general

purpose input/output (GPIO) pin exactly 1 clock cycle before the targeted instruction,

which permitted precise, reliable glitches to be injected. These conditions are ideal for

an attacker and should provide a reasonable upper bound on the capabilities of glitching

attacks. We investigate the following research questions:

RQ2 What is the upper bound of glitching effectiveness?

RQ3 Does the value being compared affect its glitchability?

RQ4 How are branches being “skipped” (i.e., which instruction is being corrupted, and

in which way)?

RQ5 How much more difficult is a multi-glitch (i.e., a glitch that affects multiple in-

structions)?

5.6.1 Glitching Effects

In theory, the actual value being compared should affect the ability to glitch a certain

branch. For example, glitching a 1 into a 0 should be easier than glitching 0b1010 into

107

Protecting Embedded Systems from Physical Attacks Chapter 5

0b0101. To test this, we constructed three distinct experiments to evaluate the following

expressions: while(a), where a=1; while(!a), where a=0; and while(a!=0xD3B9AEC6),

where a=0xE7D25763. These are all implemented as empty infinite loops, with volatile

variables so they are not optimized out by the compiler (a successful glitch would exit

the loop). The hypothesis being that while(a) and while(!a), which are common in

C code, should be much easier to glitch than values with a large hamming distance, as

they both only require a single bit flip to change the outcome of the conditional branch.

To evaluate the effects of glitching on these three loops, we scanned all of the possible

glitching parameters for each clock cycle in question. Each experiment, when compiled

takes up to 8 clock cycles (the branch instruction can take between 1 and 3 clock cycles).

Thus, we varied our clock-cycle offset between 0 and 7, and for each clock cycle ranged

the width and offset of the glitch (i.e., [−49%, 49%] × [−49%, 49%]), resulting in 9,801

glitching attempts per clock cycle. The results of these three experiments, along with

value observed in the comparison register, can be seen in Table 5.2.

Our results only partially corroborate our hypothesis, with while (!a) being the

most vulnerable (0.705% success rate) and the other two achieving comparable success

rates (0.347% and 0.449%, respectively). Surprisingly, the case where a was initialized

to 1, and the condition was while(a) was the most resilient to glitching. However, when

after examining exactly how the glitches were succeeding, a different story emerged. The

assembly code for each case, along with the corresponding clock cycles, is also shown in

each table. Since the processor being glitched has a three-stage pipeline, it is difficult to

determine which instruction, and which portion of the pipeline was affected by the glitch,

but the location of the glitch at least bounds the glitch’s effects. For example, the the

initial clock cycles (0 through 4), which set the values, appeared to be more susceptible to

glitching in the simple comparison cases (i.e., !a and a) than in the complex comparison

case. This is likely attributed to the the fact that the underlying assembly instructions

108

Protecting Embedded Systems from Physical Attacks Chapter 5

changed as a result of the comparison (i.e., during the fetch stage). But the the fact

the instructions have fewer glitchable clock cycles is still significant. In fact, the case for

while(!a) by far had the most data corruptions that resulted in the branch condition

being satisfied, as any non-zero value would suffice.

To explain some of the values that were observed in the resulting comparison regis-

ter, we attached a JTAG debugger to the board and examined the state of the system

before the loop was entered. For every case, 0x20003FE8 is the value of SP, 0x48000028

and is the GPIO address that was written to. Thus, 0x40007FD7 is likely a mix of

the GPIO address and some corruption (Table 5.2). Similarly, for the while(a) case,

0x20003FF6 is likely a mix of SP and some corruption (Table 5.2). Interesting, in the

while(a!=0xD3B9AEC6) case, 2 of the glitches resulted in the comparison register, R2,

being correctly set to the unlikely value of 0xD3B9AEC6, which is not on the stack, but

is only stored as intermediate (Table 5.2). This must mean that the the LDR instruction

was corrupted to load the valid into the wrong register. Similarly, the various the 0x4

values are likely a residual from the address in the register during a load. We were unable

to identify any obvious connections to the other values stored in the registers, and can

only assume that they are attributed to random bit flips.

5.6.2 Locating Optimal Parameters

We also investigated the best case scenario for glitching an unprotected conditional

branch. In this experiment, we sought to identify glitch parameters that would have

a 100% success rate. To achieve this, our algorithm starts by scanning our glitching

parameters (i.e., target offset, width, and offset) with a 10 cycle clock glitch, which en-

compasses every instruction in the while loop. Once successful parameters are identified,

the algorithm then tests each individual clock cycle within the 10 clock-cycle range and

109

Protecting Embedded Systems from Physical Attacks Chapter 5

recursively increases its precision (i.e., 1
10
∗depth) until a 100% success rate (10 out of 10

attempts) is achieved. In fact, this algorithm proved to be quite effective, locating the

optimal parameters when attacking a while(a) loop in less than 59 minutes. Indeed, the

algorithm achieved 7,031 successful glitches out of 36,869 in its search for when using val

!= 0 as the comparator. When applied to a while(a!=0xD3B9AEC6) loop (i.e., numbers

with large hamming distance), the algorithm converged in 16 minutes with 901 successful

glitches.

5.6.3 Multi-glitch Attacks

Previous work has proposed implementing redundant checks to thwart glitching,

which is based on the assumption that successfully glitching multiple instructions is a

significant technical barrier for attackers [150,184]. Thus, we constructed an experiment

to find the upper bound on the effectiveness of triggering an identical glitch twice in a

row (i.e., the ideal condition for an attacker as the same tuning parameters should work

for both glitches). We used the same comparisons that we used in our single glitch sce-

narios, but now with the trigger being reset, triggered, and a second glitch inserted (i.e.,

two identical loops back-to-back). We recorded the number of successful partial glitches

(i.e., the first glitch was successful but the second was not) as well successful multi-

glitches (i.e., both glitches worked and the execution skipped both branch conditions).

The results from these experiments can be seen in Table 5.3.

It is clear that multi-glitching is significantly more difficult in practice than a single

glitch. The partial glitch success rates (i.e., only the first glitch succeeded) are similar

to those in our previous experiments: 1.330221%, 0.419600%, and 0.413223%, while the

multi-glitch success rates (i.e., the second glitch was also successful) were significantly

lower: 0.493572%, 0.067595%, and 0.257627% respectively. Requiring a multi-glitch

110

Protecting Embedded Systems from Physical Attacks Chapter 5

Table 5.3: The number of successful partial and multi-glitch attacks against three
different branch guards implemented as infinite while loops

while(!a) while(a) while(a!=0xD3B9AEC6)
Cycle Partial Full Partial Full Partial Full

0 77 12 83 24 23 7
1 20 2 19 - 2 -
2 2 - 1 - - -
3 124 87 - - - -
4 326 211 1 - - -
5 166 36 30 2 47 36
6 161 17 49 2 136 99
7 167 22 146 25 116 60

Total 1043 387 329 53 324 202
Total (%) 1.330% 0.494% 0.420% 0.068% 0.413% 0.258%

reduced the probability of a successful glitch by factors of 6×, while(!a), 3×, while(a),

and 1.6×, while(a!=0xD3B9AEC6). While these results may seem higher that previous

work would indicate, this experiment was construction to present the best case scenario

for a multi-glitch. In practice, these factors would be significantly higher, since the

attacker would not have 2 perfect triggers, the comparisons would likely not be identical,

and the numerous physical limitations to generating multiple glitches in rapid succession

become a factor (e.g., voltage glitches and EMPs require some recharge time).

Potentially more interesting is the large gap between partial glitches and successful

multi-glitches. This discrepancy leaves the potential to not only make glitching more

difficult but to detect a glitching attempt, as a partial glitch introduces a logical impos-

sibility, but do not entirely skip the instrumented checks.

5.6.4 Long Glitch Attacks

While the multi-glitch results are encouraging, clock glitching permits an even more

powerful attack. Specifically, an attacker can inject a glitch at every clock cycle corrupt-

111

Protecting Embedded Systems from Physical Attacks Chapter 5

ing multiple contiguous instructions. Thus, we also tested the efficacy of a long glitch

attack (i.e., a glitch that is inserted for multiple clock cycles). In this experiment, we

started by glitching 10 contiguous clock cycles (i.e., the minimum number of clock cycles

the two loops could possibly be completed in), and varied the clock cycles up to 20. For

each number of repeated clock cycles, we varied the width and offset of the glitch in the

same way as our previous experiments (resulting in 9,801 glitching attempts per clock

cycle range).

Despite the potential power of this attack, we observed mixed results (see Table 5.4).

The condition that was previously the most vulnerable, while(!a) faired much better

against this attack, with far fewer successful glitches observed. We hypothesize that most

successful glitching parameters, which disproportionately affect clock cycle 4 (i.e., the

compare instruction), are simultaneously corrupting the instructions before the compara-

tor instructions and satisfying the exit condition. In the multi-glitch case the register

would have contained 0, but in the long glitch case it is likely that the subsequent load was

also glitched, disrupting the ideal conditions for the previously observed single-clock-cycle

attacks. Conversely, the while(a) case appeared to be significantly more susceptible to

long glitch attacks, with over a 10× increase in the success rate (i.e., from 0.068% to

0.7%). We hypothesize that glitching so many load instructions could cause the various

load instructions to fail, which would 0 in the register and satisfying the exit condition.

The higher number of success between 10 and 12 cycle glitches appears to support this

claim, as after 12 clock cycles the glitch would start to affect the compare and branch

instructions of the second loop.

The lack of successes for the while(a!=0xD3B9AEC6) case coincides with our hypoth-

esis that a glitch which simply changes the value in the register is unlikely to succeed. It

appears that successful glitches against case are corrupting the comparison, the branch,

or the actual value loaded. In a multi-glitch scenario, the targeted glitch was affecting

112

Protecting Embedded Systems from Physical Attacks Chapter 5

Table 5.4: The number of successful long glitches against three unique branch guards
implemented as two subsequent while loops, obtained by attempting all glitch offsets,
widths, and number of clock cycles using a powerful clock glitch

Cycles while(!a) while(a) while(a!=0xD3B9AEC6)

0-10 20 96 35
0-11 19 140 20
0-12 6 92 8
0-13 7 55 6
0-14 9 66 8
0-15 6 74 7
0-16 6 54 4
0-17 7 62 4
0-18 9 50 6
0-19 9 46 5
0-20 11 52 4

Total 109 787 107
Total (%) 0.101% 0.730% 0.0992%

the same clock cycle both times, against identical code. However, in the long glitch case,

there are other instructions in the way that will also get glitched, making it exceedingly

unlikely both of the compare and branch instructions will be bypassed.

5.7 Glitching Defenses

While many glitching defenses have been proposed, few have been implemented, and

we are unaware of any tool for generally applying these techniques. Thus, we present

GlitchResistor, the first automated, open-source tool for implementing glitching de-

fenses. GlitchResistor was implemented using the LLVM Project to modify both the

source and compiled code (Clang and LLVM respectively). This enables GlitchRe-

sistor to support multiple architectures with relatively low overhead. Indeed, many of

the defenses must be implemented as a compiler pass, since implementing them in source

code would result in the compiler optimizing them away (i.e., because they appear as log-

ically impossible or dead code). In this work, we only focused on the ARM architecture,

113

Protecting Embedded Systems from Physical Attacks Chapter 5

specifically the STM32 microcontroller, due to its proliferation in embedded systems, its

development support, and the supporting glitching frameworks [153]. However, our de-

fenses work, without modification, on any architecture that is supported by LLVM (e.g.,

MIPS, PowerPC, and RISC-V architecture)

In general, software-based glitching defenses can be categorized into three broad cat-

egories: constant diversification, redundancy, and random timing.

5.7.1 Constant Diversification

Ideally, GlitchResistor would ensure that the set of enumerations (ENUMs) and

return values would have a maximum minimum pairwise hamming distance (i.e., the

minimum hamming distance between all of the values would be maximized) to minimize

the chance of bit flips modifying a value into a different valid value. However, this is

unfortunately an open coding theory problem in the general case, i.e., A(n, d) [185]. Thus,

GlitchResistor instead leverages Reed-Solomon codes to generate values with large

pairwise hamming distances. In theory, this implementation can generate codes such that

the minimum pairwise hamming distance is b− dlog2(c)e where b is the size of the value

in bits and c is the number of values being generated. However, we used a more general

purpose open-source implementation [186], which provides a flexible, fast computation

of Reed-Solomon error codes. Our current implementation is configured with a message

size of two bytes (i.e., up to 216 unique values in a set) and an ECC length equal to the

size of values being generate (e.g., 4 bytes for a typical ENUM). GlitchResistor then

generates a message for each number [1, count] and uses the generated ECC as the new

value in the program code. Ensuring a minimum pairwise hamming distance of 8.

ENUM Rewriter The ENUM Rewriter is the only defense implemented as a clang

source code rewriter tool. This is because in the LLVM IR, used by a compiler pass,

114

Protecting Embedded Systems from Physical Attacks Chapter 5

ENUMs will be replaced by corresponding constant values, and it is hard to detect which

constant is the result of an ENUM expansion. Consequently, it is hard to replace ENUMs

using a compiler pass in a sound manner. GlitchResistor first parses the abstract

syntax tree (AST) of all the source and header files to identify ENUM declarations

that have all of their values uninitialized. Then, for each of the uninitialized ENUM

declarations, a set of Reed-Solomon codes is generated, and used as the declarations.

GlitchResistor does not modify partially or fully initialized ENUM declarations, as

they could represent certain expected values, and changing the values might affect the

functionality of the firmware.

Non-trivial Return Codes GlitchResistor finds all of the functions that only re-

turn constant values using the LLVM ModulePass. For such functions, GlitchResistor

examines how the return values are used by its callers. When they are exclusively used

directly in branches (i.e., compared to a constant) GlitchResistor replaces the return

value and the constant that it is compared to with the hard-to-glitch values from our

Reed-Solomon implementation. Our decision to only instrument functions that return

constants reflects the fundamental difficulty in calculating all of the possible computed

return values. Instrumentation that deals with such corner cases would be significantly

more intrusive, and likely unsound. Our decision to only instrument return values that

are used directly in branches could be relaxed, though only to a certain extent. If the

instrumented constant is stored in an aliased memory location, a significantly more heavy-

weight instrumentation would be required to dynamically track the value and update all

of the references appropriately. Despite these minor limitations, our return code protec-

tion instruments a reasonable number of functions in practice (i.e., 24 out of 312 total

functions in our evaluated firmware).

115

Protecting Embedded Systems from Physical Attacks Chapter 5

5.7.2 Redundancy

GlitchResistor’s redundancy defenses are implemented as an LLVM compiler pass

that replicates existing code to ensure that no single-glitch attack will be capable of

corrupting the execution. We ensure that code added for redundancy is not optimized

out by other compiler passes by marking the inserted load and store instructions as

volatile. These checks are capable of detecting glitches, as the injected check will never

be false under normal operating conditions. Others have proposed and tested simple

instruction duplication [187], concluding that instruction duplication alone is likely not

a cure-all solution; hence the multi-pronged approach.

Data Integrity GlitchResistor’s data integrity protection is implemented by per-

forming a ModulePass, which locates any global variables that were marked as sensitive

by the developer (e.g., by listing them in a configuration file). Once identified, these

sensitive variables are replicated, and a second variable, which is used for verification, is

allocated in a separate region of memory to ensure that it is not physically co-located

with the initial variable. When a sensitive variable is written to memory, it is inverted

(i.e., xored with ¬0 of the appropriate size), and this integrity value is stored in the

complementary integrity variable. Then, when the value is later read from memory, both

the original variable and the integrity value are read from memory and the operation will

continue if and only if var⊕ varIntegrity == ¬0, otherwise a glitch detection function

will be called.

Branches and Loops GlitchResistor implements two FunctionPass transforma-

tions to replicate conditional branch conditions. The first replicates the true condition for

every conditional branch in the control-flow graph (CFG). When replicating the branch

condition, GlitchResistor also replicates any instructions that are needed to calculate

116

Protecting Embedded Systems from Physical Attacks Chapter 5

the comparison (e.g., loading a value from memory, mutating it, and comparing it to an

immediate). However, not every instruction can be replicated. For example, volatile vari-

ables, function calls, and LLVM PHINodes cannot be replicated because they may have

adverse side-effects, or are likely to change between checks. This redundant comparison

is computed to be the opposite of the initial branch condition (e.g., if (a == 5) would

become if if (¬a == ¬5)), which ensures that the same bit flips repeated twice would

not be able to bypass both checks. This defense assumes that security-critical operations

are typically guarded by a conditional branch and that the default, false, branch is not

as important to protect, as it will be taken most of the time. However, this assumption

is does not hold with loops. Thus, GlitchResistor performs a second pass to add the

same redundant instrumentation to the false branch of loop guards.

Detection Reaction GlitchResistor does not dictate an action to be taken when

a glitch is detected, but instead provides a function that is trivially implemented by the

developer. In fact, the specific reaction to a detected glitching attempt is necessarily

application specific. For example, on a gaming system it may be sufficient to simply

report the attempt or disable updates, whereas a critical military system may want to

react more assertively (e.g., completely destroying the data or device).

Random Timing

GlitchResistor currently injects randomness in the execution by injecting a ran-

dom busy loop at the end of each basic block the code. The current implementation is

a simple linear congruential generator (LCG) with the input parameters used by glibc,

and each invocation executes between 0 and 10 no-operation (NOP) instructions. To

ensure that any observable trigger is necessarily before the random function, the de-

lay function is injected at the end of every basic block that ends in a SwitchInst or

117

Protecting Embedded Systems from Physical Attacks Chapter 5

BranchInst (i.e., right before a branch). This code injection was implemented as an

LLVM FunctionPass. Functions can be easily omitted when the module is configured in

opt-out mode or included when it is configured in opt-in mode. Our seed is incremented,

and written to flash, during the first invocation of the function (on our STM32 board,

this was implemented in 10 lines of portable C code). GlitchResistor modifies the

state of the random function immediately after the board boots (even before the board

initializes) and writes the new seed to non-volatile memory to thwart repeated attempts

against the same seed. This initialization code is also instrumented by the other defenses,

which are capable of detecting failed glitching attempts.

5.8 Evaluation of Defenses

GlitchResistor was both developed and evaluated on real hardware. Specifically,

we leveraged the STM32 suite of embedded devices. Two research questions arise with

respect to defenses:

RQ6 How much overhead, in terms of both size and runtime, is incurred when using each

GlitchResistor defense?

RQ7 How effective are the various GlitchResistor defenses at both mitigating and

detecting glitching attacks?

5.8.1 Overhead

To evaluate the overhead imposed by GlitchResistor we first built a simple, in-

dicative firmware using the STM32CubeMX code generator. This firmware initializes

the board, and then loops forever, reading the number of ticks (i.e., milliseconds) since

the the board was booted and printing out performance information after every loop

118

Protecting Embedded Systems from Physical Attacks Chapter 5

Table 5.5: Time overhead imposed by each defense on the boot time of a standard
STM32 firmware image(clock cycles)

Defense Clock Cycles (Avg.) % Increase Constant % Adjusted

None 1736 0.00% 0 0.00%
Branches 1933 11.35% 0 11.35%

Delay 184388 10521.45% 177849 276.69%
Integrity 1737 0.06% 0 0.06%

Loops 1737 0.06% 0 0.06%
Returns 1739 0.17% 0 0.17%

All\Delay 2082 19.93% 0 19.93%
All 184761 10542.93% 177993 289.88%

iteration using the UART interface. The variable that is used to store the tick counter

was marked as a sensitive variable, and two functions which use ENUMs and constant

return values are used to check the tick value. The firmware will call a success function

if the tick value is ever equal to 0, which was designed to be impossible.

The specific board that we used in this experiment was an STM Nulceo 64 with an

ARM Cortex-M4 (STM32F303RE)2. The default project, configured to be built with a

Makefile was easily augmented to be built with LLVM and the appropriate GlitchRe-

sistor modules using a simple patching script that is provided with GlitchResistor.

To ensure that there was no bias in the evaluation, we only measure the boot time of

the system, as this code was provided by the CubeMX suite, and is used in numer-

ous real systems. Moreover, the most security-critical code on embedded systems (i.e.,

when GlitchResistor would provide the most value) is typically the bootloader. Each

firmware was built using the default -Og optimization, which provides a worst case anal-

ysis. Furthermore, we can use existing static analysis techniques [188, 189] to further

reduce the regions of code that need to be instrumented.

2This is different from our glitching examples, because this board is more readily available and requires
no special hardware to test with.

119

Protecting Embedded Systems from Physical Attacks Chapter 5

Runtime

To evaluate the boot process in a chip-agnostic way, we use the number of CPU

cycles as our metric for comparison. This was done by enabling the data watchpoint

and trace unit (DWT) on the board, and then reading the CPU once when the board is

reset, and again after the HAL and board had completely initialized. Since our board

is doing relatively simple operations, it only takes 1,736 clock cycles to boot in the un-

instrumented case. We evaluated each defense independently, as they can be used à la

carte. The results are shown in Table 5.5.

Injecting delays incurs in a substantial constant overhead, as it must both read and

write from flash memory the first time that it is called to update the seed to ensure that

the pseudo-random number generator (PRNG) is unpredictable at every boot. When this

constant overhead is accounted for, instrumenting every basic block in the boot process

incurs a 277% overhead. However, in practice, a developer may want to use this particular

feature in an “opt-in” way, such that it will only be applied to annotated functions.

Without the delay defenses enabled on every basic block, the runtime overhead incurred,

in terms of clock cycles, is less than 20%. Nevertheless, both of these overheads are likely

acceptable in practice to protect the critical code regions in a deployed embedded system.

Size

Since most embedded systems have strict constraints on their size, weight, and power

(SWaP), we also enumerate how much additional code is inserted by GlitchResis-

tor. Table 5.6 depicts the various code segments that are affected by each defense in

GlitchResistor. Again, injecting a delay into every basic block incurs the largest

overhead (13%). Meanwhile, the other defenses only combine for a 15% increase in size,

most of which is in the .text segment. While modifying constant values (i.e., returns

120

Protecting Embedded Systems from Physical Attacks Chapter 5

Table 5.6: Size overhead imposed by each individual defense on a standard STM32
firmware built using CubeMX (bytes)

Defense text text (%) data data (%) bss bss (%) total total (%)

None 6456 120 1728 8304
Branches 6956 7.74% 120 0.00% 1728 0.00% 8804 6.02%
Delay 7512 16.36% 128 6.67% 1768 2.31% 9408 13.29%
Integrity 6840 5.95% 124 3.33% 1732 0.23% 8696 4.72%
Loops 6840 5.95% 124 3.33% 1732 0.23% 8696 4.72%
Returns 6460 0.06% 120 0.00% 1728 0.00% 8308 0.05%

All\Delay 7700 19.27% 124 3.33% 1732 0.23% 9556 15.08%
All 9144 41.64% 132 10.00% 1768 2.31% 11044 33.00%

and ENUMs) should in theory be “free,” we actually see that they increase the size of

the binary slightly because the transformed values are all necessarily four bytes, while

smaller values can be encoded as a single byte. While these overheads may seem large

after an initial glance, it is a small price to pay for the protection provided.

5.8.2 Effectiveness of Defenses

When testing these defenses against real glitches, we created both a worst case and

best case scenario. In both cases we marked our variables as volatile, which hinders

the effectiveness of the defenses (i.e., they should perform better in practice). This

decision should provide a reasonable lower-bound for the effectiveness of these defense

in practice (i.e., their ability to protect any code). Similarly in both experiments, we

attempted three different attack scenarios: a single glitch attack, where the clock cycle

being glitched was varied (between 0 and 10); a long glitch attack, where the number

of clock cycles being glitch was varied (between 10 and 100 at increments of 10); and

a windowed long glitch attack, where the number of clock cycles was fixed at 10 (the

best case in our previous experiment), but the initial clock cycle was varied (between

0 and 10 at increments of 10). All of the experiments had a perfect trigger, as before.

These attacks are far more powerful than what an attacker would have access to on a

121

Protecting Embedded Systems from Physical Attacks Chapter 5

real system, but, again, were constructed to provide a lower bound for the efficacy of the

defenses.

while(!a) (worst case)

The while(!a) condition was the most vulnerable against single-glitch attacks, and

was thus chosen as our worst case scenario. As in Section 5.6, we glitched the infinite

loop, attempting to break out of it with the various defenses compiled into the code.

While it should be theoretically impossible to defeat these defenses with a single glitch,

the volatile variable leaves the possibility of successful glitching the register value and

satisfy both conditional branches. The results from the three glitching attacks against

this code are shown in Table 5.7.

The defenses turned out to be highly effective against the single-glitch attack, with

success rates plummeting to less than 0.01%. Moreover, the detection rate is remarkably

high (over 98%) both with and without the randomization defense enabled. This result

is somewhat unsurprising, as these defenses were specifically constructed to ensure that

no single incorrect branch would result in a compromised system [190]. However, the

detection rates are especially encouraging with respect to real-world use cases for these

defenses. The results are similarly positive against the more powerful long glitch attacks,

with all of the defenses touting detection rates above 79%. It appears that the 10 cycle,

windowed glitch is far more effective against systems that do not have randomization

enabled, since the more targeted window produces fewer detectable side effects. However,

with randomization enabled, this attack performs slightly worse that the longer long

glitch attack, likely due to the fact this shorter glitch window is more likely to corrupt

a branch condition in the random function, which would be detected. On the contrary,

since the long glitch attack will affect every clock cycle after the trigger, it has the

possibility of glitching all of the detection code that it may touch.

122

Protecting Embedded Systems from Physical Attacks Chapter 5

Table 5.7: Successful glitches and detections against an infinite loop and a branch
condition with GlitchResistor defenses

while(!a) if(a==SUCCESS)

All All\Delay

S
in

g
le Total Glitches 107,811 107,811

Successes 10 (0.00680%) 4 (0.00408%) - 1 (0.000928%)

Detections 653 (98.4%) 1,032 (99.6%) 351 (100%) 95 (95.4%)

L
o
n
g Total Glitches 98,010 98,010

Successes 258 (0.263%) 262 (0.267%) 3 (0.00306%) 44 (0.0449%)

Detections 981 (79.2%) 649 (71.2%) 1,143 (99.7%) 274 (86.2%)

1
0

C
y
cl

e
s

Total Glitches 107,811 107,811

Successes 227 (0.211%) 1,281 (1.188%) 10 (0.00557%) 2 (0.00186)

Detections 1,858 (89.1%) 992 (43.6%) 2,019 (99.7%) 1016 (99.8%)

if(a == SUCCESS) (best case)

In real code, infinite while loops are unlikely to guard security-critical code. Thus,

to provide a more fair evaluation of the proposed defenses, we also attempted the three

attacks against a simple if statement that is more indicative of how programmers write

code. To ensure that all of the proposed defenses would be used, and to use the most

resilient branch condition from Section 5.6.3, we created an uninitialized enum variable:

SUCCESS, which was initialized to enum FAILURE. This scenario should be the best case for

the defenses (modulo the volatile variable), as the window for the a successful glitch is

now quite narrow (i.e., 8 clock cycles). The same attacks that from Section 5.8.2 where

used against this if statement; the results are shown in Table 5.7.

Indeed, the real power of these software-only defenses is exhibited in this case —

only one single glitch attack was successful, with detection rates above (95%). The

effectiveness of the long glitch attacks were similarly diminished. With all of the defenses

enabled, the best attack was only able to achieve a 0.00557% success rate, with over

123

Protecting Embedded Systems from Physical Attacks Chapter 5

2,000 detections (a 99.7%) detection rate. Without the randomization defense enabled,

the best attack was able to achieve a success rate of 0.0449%, with an 86.2% detection

rate. While this experiment was constructed to be the best case scenario for the defenses,

it is certainly not a corner case in real world code, demonstrating some real promise for

these types of software-only defense against glitching in practice.

5.9 Conclusion

In this work, we attempted to differentiate the theory and practice of hardware glitch-

ing. To this end, we created an emulation framework, capable of evaluating a given ISA’s

susceptibility to glitching, we examined the efficacy of various glitching attacks on real

hardware, and we presented GlitchResistor, an automated, open-source software-

only defense framework. Our emulated experiments confirm that bit-level corruption can

“skip” control flow instructions in ARM with a high likelihood in theory (60% when

flipping to 0 and 30% when flipping to 1). Our real-world experiments demonstrated

that glitching can be highly effective when all of the variables are controlled (e.g., 100%

success rate), and that the values being compared affect the glitchability of a particular

branch instruction (e.g., while(!a) was 2×more susceptible to glitching than while(a)).

Moreover, we provide insights into how the control flow instructions are being skipped

(e.g., the register data being corrupted versus the execution being corrupted). We also

demonstrate the complexity involved with multi-glitch attacks, whose difficultly is the

basis of many proposed defenses. Finally, we show that GlitchResistor, with it’s var-

ious software-only glitching defenses are capable of completely eliminating single-glitch

attacks in practice and can minimize the likelihood of a successful multi-glitch attack

(e.g., by bringing the success rate down to 0.000306%), while detecting failed glitching

attempts at a high rate (e.g., between 79.2% and 100%).

124

Chapter 6

Related Work

6.1 LO-PHI

VAMPiRE [191] is a software breakpoint framework running within the operating

system. It runs in kernel mode, meaning it is safe for debugging ring 3 (user mode)

malware. Rootkits can gain kernel-level privileges to circumvent VAMPiRE. However, as

LO-PHI does not rely on the operating system, it can be used to safely debug rootkits.

Ether [59] is a malware analysis framework based on hardware virtualization ex-

tensions (e.g., Intel VT). It runs outside of the guest operating systems, i.e., in the

hypervisor, by relying on underlying hardware features. BitBlaze [4] and Anubis [5] are

QEMU-based malware analysis systems. They focus on understanding malware behavior,

instead of achieving better transparency. V2E [60] combines both hardware virtualization

and software emulation. HyperDbg [61] uses the hardware virtualization that allows the

late launching of VMX modes to install a virtual machine monitor, and run the analysis

code in the VMX root mode. SPIDER [62] uses Extended Page Tables to implement

invisible breakpoints and hardware virtualization to hide its side-effects. Compared to

our system, Ether, BitBlaze, Anubis, V2E, HyperDbg and SPIDER all rely on easily de-

125

Related Work Chapter 6

tected emulation or virtualization technology [52, 76–78] and make the assumption that

virtualization or emulation is transparent from guest-OSes. In contrast, LO-PHI pro-

vides memory access directly from the PCI bus, greatly reducing the potential attack

surface. In addition, traditional debugging techniques often add varying degrees of exe-

cution overhead. LO-PHI employs specialized hardware that is fast enough to decrease

visible timing artifacts otherwise introduced by emulation.

BareBox [15] is a malware analysis framework based on a bare-metal machine with-

out any virtualization or emulation techniques. However, it only targets the analysis of

user-mode malware, while LO-PHI can be used for debugging hypervisor rootkits and

kernel-mode device drivers. BareCloud [16] is more similar to our approach, as it utilizes

mostly un-instrumented machines and executes the binaries with a small software-based

loader. Nevertheless, BareCloud requires a network-based storage device and only has

information about the disk state before and after execution of the binary, whereas we are

able to reconstruction the entire stream of file-system operations. Futhermore, BareCloud

has no memory instrumentation and presents numerous detectable artifacts (e.g., mal-

ware loader software, networked-drive). Willems et al. [93] used branch tracing to record

all the branches taken by a program execution. As pointed out in the paper, the data

obtainable by branch tracing is rather coarse, and this approach still suffers from a CPU

register attack against branch tracing settings. However, LO-PHI provides fine-grained

memory access over the PCI bus, and is thus resistant to CPU register mutation.

Virt-ICE [192] is a remote debugging framework. It leverages virtualization technol-

ogy to debug malware in a VM and communicates with a debugging client over a TCP

connection. However, since it uses a VM, a malware may refuse to unpack itself in the

VM. LO-PHI accesses the raw host memory very rapidly, so we can transparently detect

when this type of execution occurs.

There is a vast array of popular debugging tools. For instance, IDA Pro [193] and

126

Related Work Chapter 6

OllyDbg [194] are popular debuggers running within the operating system that focus on

ring 3 malware. DynamoRIO [195] is a process virtualization system implemented using

software code cache techniques. It executes on top of the OS and allows users to build

customized dynamic instrumentation tools. Similar to LO-PHI, WinDbg [196] uses a

remote machine to connect to the target machine using serial or network communications.

However, these options require special booting configuration or software running within

the operating system, which is easily detected by malware. LO-PHI requires a PCI slot,

but is intended to run on out-of-the-box consumer hardware, where debugging facilities

may not be desirable.

6.2 Conware

The handling of peripheral interactions is one of the linchpins of the dynamic analysis

for embedded firmware.

Initial dynamic analysis techniques leveraged hardware-in-the-loop analysis, where

all of the interactions with the peripherals are forwarded to the real device. Avatar [20]

was the first such emulation framework. Similarly, Charm [197] targeted smartphone

drivers. However, Charm is designed for kernel drivers rather than arbitrary peripherals.

Prospect [198] forwards peripheral accesses at the syscall layer. However, the syscall

interface does not exist in most of the bare-metal firmware.

Several optimizations have been made over näıvely forwarding all of the peripheral ac-

cesses to the hardware. Surrogates [17] significantly improves the forwarding performance

of Avatar via customized hardware. Kammerstetter et al. [199] uses cached peripheral

accesses to minimize the interaction with real hardware. And Avatar2 [118] generalized

caching by allowing the replay of forwarded peripheral input and output without using

the hardware.

127

Related Work Chapter 6

Recently, several works proposed domain-specific models to handle peripherals. Here,

effective peripherals models are carefully engineered, mostly manually, for a specific set of

firmware. HALucinator [116] uses a model of a known HAL implementation to emulate

embedded systems with the HAL. Similarly, PartEmu [200] and Exvivo [201] create

peripheral models that can handle ARM-based, Trusted operating systems, and Android

kernel drivers, respectively.

Few works try to handle peripheral interactions in a generic manner automatically.

Pretender [115] is a record-and-model approach that first records peripheral accesses,

generates access models, and then tries to intelligently reply. However, Pretender needs

debug access to the chip being modeled and only supports simplistic peripheral models.

P2IM is a fuzzing-based approach that generates acceptable inputs by randomly fuzzing

the firmware [119]. P 2IM only considers on-chip peripherals and requires their abstract

models to be generated manually and offline by a domain expert. On the contrary,

Conware can generate these models automatically can support both on- and off-chip

peripherals.

6.3 GlitchResistor

Previous work [172], proposed and evaluated two software-only defenses (one which

replicates instructions for redundancy [202] and the other which detects glitches [203])

for bl and ldr on ARM systems against EMFI glitching. These defenses are quite simi-

lar to our techniques for redundancy, and had similar success when they were evaluated.

However, they noted that the countermeasure needed to be extended to a larger set of in-

structions and architectures, which GlitchResistor does by leveraging LLVM. Recent

work [184] independently implemented, and evaluated branch duplication techniques in

the context of spurious bit flips due to hardware malfunctions. Similar work [204] pro-

128

Related Work Chapter 6

posed a CFI method which implements a counter to detect if two more C source lines

have been “skipped.” However, this defense is especially heavyweight since it injects

code after every instruction and it does not account for the possibility of a multi-glitch.

Another work, CAMFAS [205], that uses SIMD [206] to replicate almost all instruc-

tions to detect fault attacks also suffers from the problem of being cumbersome and

requires special hardware. Our LLVM modifications are similar to those implemented by

Obfuscator-LLVM [207]. However, Obfuscator-LLVM is intended to defend against soft-

ware faults and reverse engineering, whereas GlitchResistor is explicitly defending

against hardware-induced faults.

Others have proposed a hybrid software and hardware approach where functions can

be protected by inserting an assert function in the source, which will be updated with

an LLVM pass to confer with the hardware and verify the “signature” of the function

being executed [171]. GlitchResistor is differentiated by its fully-automated instru-

mentation and lack of source-code annotations.

Emulated glitching attacks has also been done previously. For example, one system

implemented a fault injection emulator in the context of writing fault-tolerant code,

but did not examine malicious glitching attacks [208]. Others similarly implemented a

QEMU-based fault injection emulator [209] and glitch simulator [210] have been created

to evaluate fault-tolerant techniques, both of which achieved mixed results.

Previous work [139] presented a comprehensive suggestions for source code modifi-

cations to make code glitch resistant, which our defenses are based on. Similarly, more

recent work [44] advocated that “software mitigations like execution flow control, re-

dundancy or random delays should be implemented” in embedded firmware. However,

GlitchResistor is the first open-source framework for experimenting with various de-

fenses and to test these defenses against attacks on real hardware, grounding our results

and providing a more realistic view of their practical efficacy.

129

Chapter 7

Future Research Directions

I created and presented multiple novel techniques for analyzing embedded systems and

insights into potential defenses. However, this research has subsequently presented new

hypotheses and potential future research directions, which I will briefly enumerate here.

7.1 Continuous Introspection

LO-PHI demonstrated the practicality of using hardware introspection as a technique

for performing specific analysis (e.g., detecting rootkits) and the ability to debug firmware

that would otherwise be prohibitively difficult due to cost or technical limitations. Yet,

the idea of using hardware-based introspection as a continuous integrity monitor is still

mostly unexplored. Hardware instrumentation offers an unabated view of the system

that is difficult, if not impossible, for any software-based exploit to avoid, making it an

ideal method for detecting software compromises in a way that cannot be subverted.

For the full value of a hardware-based integrity checking technique to be realized, it

would ideally be fully automated and offer the ability to automatically heal the software.

This would require a novel technique for automatically bridging the semantic gap (i.e.,

130

Future Research Directions Chapter 7

correlating low-level artifacts into high-level actions) to both raise alerts and rewrite the

analyzed protocol inline to mitigate vulnerabilities. An unsupervised learning technique

that could have its sensitivity and reactivity tuned based on the application could be a

valuable tool for critical embedded systems. This work would create more survivable and

resilient embedded systems.

7.2 Unglitchable Hardware

Glitching still remains one of the most effective methods for attackers to compromise

embedded systems. While my work raises the bar significantly by both shining light on

how these attacks work in practice and providing a framework to easily deploy effective

defenses on real-world systems (i.e., GlitchResistor), it does not completely mitigate

the problem. In fact, software-based techniques can never completely mitigate glitch-

ing attacks. In the limit every defensive instruction could be “skipped.” To this end,

the ability to glitch a systems appears to be directly related to the hamming distance

between the intended instruction and a nearby no operation instruction, which the in-

tended instruction can transformed into by a glitch. Thus, it appears that ISAs could be

constructed in a glitch resistant way by simply remapping instructions. There are also

novel fabrication techniques that can be done to ensure that glitches are always detected

(e.g., brown out detection, redundant checks, or parallel computation with different clock

domains). Exploring the fabrication of glitch-resistant hardware could produce embed-

ded systems that would be significantly more secure against physical attacks than the

systems that we are using today.

131

Future Research Directions Chapter 7

7.3 Automated Embedded System Emulation

Emulating, or virtualizing embedded, systems is one of the biggest problems that the

security community currently faces. Indeed, Conware makes this possible by providing

a framework that can take recordings from real hardware and create robust, automata-

based models that can be used to support full-system emulation of embedded systems.

However, Conware has multiple limitations. For example, the current models can be

too specific in some cases, which can lead to the models returning sub-optimal results

in emulation. More precisely, in our experiments, our models for UART would have a

chain of edges and states for each buffered write, which would be the exact length that

was observed in practice. Thus, if the emulated firmware printed a string of a different

length to UART it would either dump the buffer too soon or too late, compared to the

actual hardware. Similarly, Conware only merges edges (i.e., state transitions) that

will not violate any of the semantics from the recording. Realistically, more states could

likely be merged, without negatively impacting the functionality of the model.

Conware was designed in this way to allow us to verify that the general idea (i.e.,

generating usable automata from recordings) was sound, without undue complexity.

There is still a lot of room for improvement on this general technique. In the case

of the interrupt-based UART buffer, the problem arises from the fact that interrupts

are currently triggered on incoming edges to generalize the approach. However, a tech-

nique could be developed to detect the cases where a MMIO write is always followed by

a specific interrupt, and handle those accordingly. This would completely eliminate the

over-specific automata that we saw in our experiment. An even more interesting approach

would be to incorporate reinforcement learning and static analysis into the framework to

automatically make the model as general as possible, while remaining useful. The idea is

to train the model on similar hardware initially, and then iteratively merge states in the

132

Future Research Directions Chapter 7

model to create a more generalized automata, and test it against the target firmware.

By incorporating static analysis, new states could even be added to the automata in the

reinforcement-learning phase by analyzing the binary on the fly to minimize the search

space of potential values to return for the future MMIO reads. A combination of these

techniques could decrease the dependence on hardware recordings, or even eliminate the

requirement entirely, producing a generalized framework for automatically emulating any

embedded system.

133

Chapter 8

Final Thoughts

A creation is only as useful, or as good, as its effect on the world. Computers, like

any world-altering technology, have the potential to either be one of the greatest human

creations, or the worst, depending on how we use them. Ubiquitous embedded systems

are set to change the human experience forever. I hope that my work, both past and

future, is able to help create a future where humans no longer fear that their computer

systems will be “hacked,” but can instead enjoy these incredible creations for what they

are: an awesome piece of engineering that can be used to improve the human experience.

134

Bibliography

[1] M. Antonakakis, T. April, M. Bailey, M. Bernhard, E. Bursztein, J. Cochran,
Z. Durumeric, J. A. Halderman, L. Invernizzi, M. Kallitsis, et. al., Understanding
the mirai botnet, in 26th USENIX Security Symposium (USENIX Security 17),
pp. 1093–1110, 2017.

[2] A. Dinaburg, P. Royal, M. Sharif, and W. Lee, Ether: malware analysis via
hardware virtualization extensions, in Proceedings of the 15th ACM conference on
Computer and communications security, pp. 51–62, ACM, 2008.

[3] C. Guarnieri, A. Tanasi, J. Bremer, and M. Schloesser, The cuckoo sandbox,
Accessed: Dec 16 (2012) 2018.

[4] D. Song, D. Brumley, H. Yin, J. Caballero, I. Jager, M. G. Kang, Z. Liang,
J. Newsome, P. Poosankam, and P. Saxena, BitBlaze: A New Approach to
Computer Security via Binary Analysis, in Proceedings of the 4th International
Conference on Information Systems Security (ICISS), Springer, 2008.

[5] Anubis, “Analyzing Unknown Binaries.” http://anubis.iseclab.org.

[6] A. Bessey, K. Block, B. Chelf, A. Chou, B. Fulton, S. Hallem, C. Henri-Gros,
A. Kamsky, S. McPeak, and D. Engler, A few billion lines of code later: using
static analysis to find bugs in the real world, Communications of the ACM 53
(2010), no. 2 66–75.

[7] S. Wagner, J. Jürjens, C. Koller, and P. Trischberger, Comparing bug finding tools
with reviews and tests, in IFIP International Conference on Testing of
Communicating Systems, pp. 40–55, Springer, 2005.

[8] I. S. Zakharov, M. U. Mandrykin, V. S. Mutilin, E. Novikov, A. K. Petrenko, and
A. V. Khoroshilov, Configurable toolset for static verification of operating systems
kernel modules, Programming and Computer Software 41 (2015), no. 1 49–64.

[9] S. Rawat, V. Jain, A. Kumar, L. Cojocar, C. Giuffrida, and H. Bos, Vuzzer:
Application-aware evolutionary fuzzing., in NDSS, vol. 17, pp. 1–14, 2017.

135

http://anubis.iseclab.org

[10] N. Stephens, J. Grosen, C. Salls, A. Dutcher, R. Wang, J. Corbetta,
Y. Shoshitaishvili, C. Kruegel, and G. Vigna, Driller: Augmenting fuzzing through
selective symbolic execution., in NDSS, vol. 16, pp. 1–16, 2016.

[11] G. Klees, A. Ruef, B. Cooper, S. Wei, and M. Hicks, Evaluating fuzz testing, in
Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security, pp. 2123–2138, ACM, 2018.

[12] P. Wagle, C. Cowan, et. al., Stackguard: Simple stack smash protection for gcc, in
Proceedings of the GCC Developers Summit, pp. 243–255, Citeseer, 2003.

[13] H. Shacham, M. Page, B. Pfaff, E.-J. Goh, N. Modadugu, and D. Boneh, On the
effectiveness of address-space randomization, in Proceedings of the 11th ACM
conference on Computer and communications security, pp. 298–307, ACM, 2004.

[14] M. Abadi, M. Budiu, Ú. Erlingsson, and J. Ligatti, Control-flow integrity
principles, implementations, and applications, ACM Transactions on Information
and System Security (TISSEC) 13 (2009), no. 1 4.

[15] D. Kirat, G. Vigna, and C. Kruegel, BareBox: Efficient Malware Analysis on
Bare-metal, in Proceedings of the 27th Annual Computer Security Applications
Conference (ACSAC), ACM, 2011.

[16] D. Kirat, G. Vigna, and C. Kruegel, Barecloud: bare-metal analysis-based evasive
malware detection, in Proceedings of the 23rd USENIX conference on Security
Symposium (SEC’14). USENIX Association, Berkeley, CA, USA, pp. 287–301,
2014.

[17] K. Koscher, T. Kohno, and D. Molnar, {SURROGATES}: Enabling
near-real-time dynamic analyses of embedded systems, in 9th {USENIX}
Workshop on Offensive Technologies ({WOOT} 15), 2015.

[18] M. Muench, J. Stijohann, F. Kargl, A. Francillon, and D. Balzarotti, What you
corrupt is not what you crash: Challenges in fuzzing embedded devices., in NDSS,
2018.

[19] M. Muench, D. Nisi, A. Francillon, and D. Balzarotti, Avatar 2: A multi-target
orchestration platform, in Workshop on Binary Analysis Research (colocated with
NDSS Symposium)(February 2018), BAR, vol. 18, 2018.

[20] J. Zaddach, L. Bruno, A. Francillon, D. Balzarotti, et. al., Avatar: A framework
to support dynamic security analysis of embedded systems’ firmwares., in NDSS,
pp. 1–16, 2014.

[21] B. Feng, A. Mera, and L. Lu, P 2 im: Scalable and hardware-independent
firmware testing via automatic peripheral interface modeling, .

136

[22] B. Dolan-Gavitt, J. Hodosh, P. Hulin, T. Leek, and R. Whelan, Repeatable
reverse engineering with panda, in Proceedings of the 5th Program Protection and
Reverse Engineering Workshop, p. 4, ACM, 2015.

[23] D. D. Chen, M. Woo, D. Brumley, and M. Egele, Towards automated dynamic
analysis for linux-based embedded firmware., in NDSS, pp. 1–16, 2016.

[24] C. Spensky, H. Hu, and K. Leach, Lo-phi: Low-observable physical host
instrumentation for malware analysis., in NDSS, 2016.

[25] H. Hu and C. S. Spensky, Systems and methods for single device authentication,
Oct. 26, 2017. US Patent App. 15/178,320.

[26] C. Spensky, J. Stewart, A. Yerukhimovich, R. Shay, A. Trachtenberg, R. Housley,
and R. K. Cunningham, Sok: Privacy on mobile devices–it’s complicated,
Proceedings on Privacy Enhancing Technologies 2016 (2016), no. 3 96–116.

[27] A. Machiry, E. Gustafson, C. Spensky, C. Salls, N. Stephens, R. Wang,
A. Bianchi, Y. R. Choe, C. Kruegel, and G. Vigna, Boomerang: Exploiting the
semantic gap in trusted execution environments., in NDSS, 2017.

[28] D. Song, F. Hetzelt, D. Das, C. Spensky, Y. Na, S. Volckaert, G. Vigna,
C. Kruegel, J.-P. Seifert, and M. Franz, Periscope: An effective probing and
fuzzing framework for the hardware-os boundary., in NDSS, 2019.

[29] A. Machiry, C. Spensky, J. Corina, N. Stephens, C. Kruegel, and G. Vigna,
{DR}.{CHECKER}: A soundy analysis for linux kernel drivers, in 26th
{USENIX} Security Symposium ({USENIX} Security 17), pp. 1007–1024, 2017.

[30] C. Spensky, A. Machiry, M. Busch, K. Leach, R. Housley, C. Kruegel, and
G. Vigna, TRUST.IO: protecting physical interfaces on cyber-physical systems, in
2020 IEEE Conference on Communications and Network Security (CNS) (IEEE
CNS 2020), (Avignon, France), June, 2020.

[31] G. Bouffard, J. Iguchi-Cartigny, and J.-L. Lanet, Combined software and
hardware attacks on the java card control flow, in International Conference on
Smart Card Research and Advanced Applications, pp. 283–296, Springer, 2011.

[32] G. Barbu, H. Thiebeauld, and V. Guerin, Attacks on java card 3.0 combining
fault and logical attacks, in International Conference on Smart Card Research and
Advanced Applications, pp. 148–163, Springer, 2010.

[33] G. Barbu, G. Duc, and P. Hoogvorst, Java card operand stack: fault attacks,
combined attacks and countermeasures, in International Conference on Smart
Card Research and Advanced Applications, pp. 297–313, Springer, 2011.

137

[34] F. Project, “The xbox 360 reset glitch hack.”
https://free60project.github.io/wiki/Reset_Glitch_Hack.html.

[35] N. Lawson, “How the ps3 hypervisor was hacked.” https:

//rdist.root.org/2010/01/27/how-the-ps3-hypervisor-was-hacked/, 2010.

[36] Y. Lu and Davee, “Viva la vita vida: Hacking the most secure handheld console.”
https://media.ccc.de/v/35c3-9364-viva_la_vita_vida, December, 2018.

[37] G. T. H. G. Roussel-Tarbouriech, N. Menard, T. True, et. al., Methodically
defeating nintendo switch security, arXiv preprint arXiv:1905.07643 (2019).

[38] A. Galauner, “Glitching the switch.” https:

//media.ccc.de/v/c4.openchaos.2018.06.glitching-the-switch#t=82,
June, 2018.

[39] A. Cui and R. Housley, BADFET: Defeating modern secure boot using
second-order pulsed electromagnetic fault injection, in 11th USENIX Workshop on
Offensive Technologies (WOOT 17), 2017.

[40] Y. Lu, “Attacking hardware aes with dfa.”
https://yifan.lu/images/2019/02/Attacking_Hardware_AES_with_DFA.pdf,
Februrary, 2019.

[41] K. Murdock, D. Oswald, F. D. Garcia, J. Van Bulck, D. Gruss, and F. Piessens,
Plundervolt: Software-based fault injection attacks against intel sgx, in Proceedings
of the 41st IEEE Symposium on Security and Privacy (S&P’20), 2020.

[42] T. roth, Trustzone-m(eh): Breaking armv8-m’s security, in The 36th Chaos
Communication Congress (36C3), December, 2019.

[43] C. Miller and C. Valasek, Remote exploitation of an unaltered passenger vehicle,
Black Hat USA 2015 (2015) 91.

[44] N. Wiersma and R. Pareja, Safety!= security: On the resilience of asil-d certified
microcontrollers against fault injection attacks, in 2017 Workshop on Fault
Diagnosis and Tolerance in Cryptography (FDTC), pp. 9–16, IEEE, 2017.

[45] A. Abbasi and M. Hashemi, Ghost in the PLC: Designing an Undetectable
Programmable Logic Controller Rootkit via Pin Control Attack, BlackHat Europe
(2016).

[46] N. Falliere, L. O. Murchu, and E. Chien, W32. Stuxnet Dossier, White paper,
Symantec Corp., Security Response 5 (2011), no. 6.

138

https://free60project.github.io/wiki/Reset_Glitch_Hack.html
https://rdist.root.org/2010/01/27/how-the-ps3-hypervisor-was-hacked/
https://rdist.root.org/2010/01/27/how-the-ps3-hypervisor-was-hacked/
https://media.ccc.de/v/35c3-9364-viva_la_vita_vida
https://media.ccc.de/v/c4.openchaos.2018.06.glitching-the-switch#t=82
https://media.ccc.de/v/c4.openchaos.2018.06.glitching-the-switch#t=82
https://yifan.lu/images/2019/02/Attacking_Hardware_AES_with_DFA.pdf

[47] S. Gayou, “Remote Code Execution on the Smiths Medical Medfusion 4000.”
https://github.com/sgayou/medfusion-4000-research/blob/master/doc/

README.md, January, 2018.

[48] G. Wassermann, “NXP Semiconductors MQX RTOS Contain Multiple
Vulnerabilities.” https://www.kb.cert.org/vuls/id/590639, October, 2017.

[49] J. Radcliffe, Hacking Medical Devices for fun and insulin: Breaking the human
SCADA systemun and Insulin: Breaking the Human SCADA System, in
BlackHat, vol. 2011, 2011.

[50] M. Lindorfer, C. Kolbitsch, and P. M. Comparetti, Detecting
environment-sensitive malware, in Recent Advances in Intrusion Detection,
pp. 338–357, Springer, 2011.

[51] D. Balzarotti, M. Cova, C. Karlberger, E. Kirda, C. Kruegel, and G. Vigna,
Efficient detection of split personalities in malware., in NDSS, 2010.

[52] X. Chen, J. Andersen, Z. M. Mao, M. Bailey, and J. Nazario, Towards an
understanding of anti-virtualization and anti-debugging behavior in modern
malware, in Dependable Systems and Networks With FTCS and DCC, 2008. DSN
2008. IEEE International Conference on, pp. 177–186, IEEE, 2008.

[53] M. Auty, A. Case, M. Cohen, B. Dolan-Gavitt, M. H. Ligh, J. Levy, and
A. Walters, “Volatility framework - volatile memory extraction utility
framework.”

[54] B. Carrier, “The Sleuth Kit.”
http://www.sleuthkit.org/sleuthkit/desc.php, July, 2015.

[55] M. Dornseif, 0wned by an ipod, Presentation, PacSec (2004).

[56] B. D. Carrier and J. Grand, A hardware-based memory acquisition procedure for
digital investigations, Digital Investigation 1 (2004), no. 1 50–60.

[57] J. Wang, F. Zhang, K. Sun, and A. Stavrou, Firmware-assisted memory
acquisition and analysis tools for digital forensics, in Systematic Approaches to
Digital Forensic Engineering (SADFE), 2011 IEEE Sixth International Workshop
on, pp. 1–5, IEEE, 2011.

[58] J. Mankin and D. Kaeli, Dione: a flexible disk monitoring and analysis framework,
in Research in Attacks, Intrusions, and Defenses, pp. 127–146. Springer, 2012.

[59] A. Dinaburg, P. Royal, M. Sharif, and W. Lee, Ether: Malware Analysis via
Hardware Virtualization Extensions, in Proceedings of the 15th Annual
Conference on Computer and Communications Security (CCS), ACM, 2008.

139

https://github.com/sgayou/medfusion-4000-research/blob/master/doc/README.md
https://github.com/sgayou/medfusion-4000-research/blob/master/doc/README.md
https://www.kb.cert.org/vuls/id/590639
http://www.sleuthkit.org/sleuthkit/desc.php

[60] L.-K. Yan, M. Jayachandra, M. Zhang, and H. Yin, V2E: Combining Hardware
Virtualization and Software Emulation for Transparent and Extensible Malware
Analysis, in Proceedings of the 8th SIGPLAN/SIGOPS Conference on Virtual
Execution Environments (VEE), ACM, 2012.

[61] A. Fattori, R. Paleari, L. Martignoni, and M. Monga, Dynamic and Transparent
Analysis of Commodity Production Systems, in Proceedings of the 25th
International Conference on Automated Software Engineering (ASE’10),
IEEE/ACM, 2010.

[62] Z. Deng, X. Zhang, and D. Xu, Spider: stealthy binary program instrumentation
and debugging via hardware virtualization, in Proceedings of the 29th Annual
Computer Security Applications Conference, pp. 289–298, ACM, 2013.

[63] T. Garfinkel, Traps and pitfalls: Practical problems in system call interposition
based security tools., in NDSS, vol. 3, pp. 163–176, 2003.

[64] B. Hay and K. Nance, Forensics examination of volatile system data using virtual
introspection, ACM SIGOPS Operating Systems Review 42 (2008), no. 3 74–82.

[65] D. Srinivasan, Z. Wang, X. Jiang, and D. Xu, Process out-grafting: an efficient
out-of-vm approach for fine-grained process execution monitoring, in Proceedings
of the 18th ACM conference on Computer and communications security,
pp. 363–374, ACM, 2011.

[66] K. Z. Snow, S. Krishnan, F. Monrose, and N. Provos, Shellos: Enabling fast
detection and forensic analysis of code injection attacks., in USENIX Security
Symposium, 2011.

[67] X. Jiang, X. Wang, and D. Xu, Stealthy malware detection through vmm-based
out-of-the-box semantic view reconstruction, in Proceedings of the 14th ACM
conference on Computer and communications security, pp. 128–138, ACM, 2007.

[68] B. Dolan-Gavitt, T. Leek, J. Hodosh, and W. Lee, Tappan zee (north) bridge:
mining memory accesses for introspection, in Proceedings of the 2013 ACM
SIGSAC conference on Computer & communications security, pp. 839–850, ACM,
2013.

[69] T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, and D. Boneh, Terra: A virtual
machine-based platform for trusted computing, in ACM SIGOPS Operating
Systems Review, vol. 37, pp. 193–206, ACM, 2003.

[70] T. K. Lengyel, J. Neumann, S. Maresca, B. D. Payne, and A. Kiayias, Virtual
machine introspection in a hybrid honeypot architecture., in CSET, 2012.

140

[71] B. Jain, M. B. Baig, D. Zhang, D. E. Porter, and R. Sion, Sok: Introspections on
trust and the semantic gap, in Security and Privacy (SP), 2014 IEEE Symposium
on, pp. 605–620, IEEE, 2014.

[72] Z. Lin, J. Rhee, C. Wu, X. Zhang, and D. Xu, Dimsum: Discovering semantic
data of interest from un-mappable memory with confidence, in Proc. ISOC
Network and Distributed System Security Symposium, 2012.

[73] Y. Fu and Z. Lin, Space traveling across vm: Automatically bridging the semantic
gap in virtual machine introspection via online kernel data redirection, in Security
and Privacy (SP), 2012 IEEE Symposium on, pp. 586–600, IEEE, 2012.

[74] B. Dolan-Gavitt, T. Leek, M. Zhivich, J. Giffin, and W. Lee, Virtuoso: Narrowing
the semantic gap in virtual machine introspection, in Security and Privacy (SP),
2011 IEEE Symposium on, pp. 297–312, IEEE, 2011.

[75] S. Krishnan, K. Z. Snow, and F. Monrose, Trail of bytes: efficient support for
forensic analysis, in Proceedings of the 17th ACM conference on Computer and
communications security, pp. 50–60, ACM, 2010.

[76] T. Raffetseder, C. Kruegel, and E. Kirda, Detecting System Emulators, in
Information Security. Springer, 2007.

[77] J. Rutkowska, “Red Pill.” http://www.ouah.org/Red_Pill.html.

[78] D. Quist, V. Smith, and O. Computing, Detecting the presence of virtual
machines using the local data table, Offensive Computing (2006).

[79] P. Ferrie, Attacks on more virtual machine emulators, Symantec Technology
Exchange (2007).

[80] J. Wang, A. Stavrou, and A. Ghosh, Hypercheck: A hardware-assisted integrity
monitor, in Recent Advances in Intrusion Detection, pp. 158–177, Springer, 2010.

[81] A. M. Azab, P. Ning, Z. Wang, X. Jiang, X. Zhang, and N. C. Skalsky,
Hypersentry: enabling stealthy in-context measurement of hypervisor integrity, in
Proceedings of the 17th ACM conference on Computer and communications
security, pp. 38–49, ACM, 2010.

[82] F. Zhang, K. Leach, K. Sun, and A. Stavrou, Spectre: A dependable introspection
framework via system management mode, in Dependable Systems and Networks
(DSN), 2013 43rd Annual IEEE/IFIP International Conference on, pp. 1–12,
IEEE, 2013.

[83] A. Baliga, V. Ganapathy, and L. Iftode, Automatic inference and enforcement of
kernel data structure invariants, in Computer Security Applications Conference,
2008. ACSAC 2008. Annual, pp. 77–86, IEEE, 2008.

141

http://www.ouah.org/Red_Pill.html

[84] N. L. Petroni Jr, T. Fraser, J. Molina, and W. A. Arbaugh, Copilot-a
coprocessor-based kernel runtime integrity monitor., in USENIX Security
Symposium, pp. 179–194, San Diego, USA, 2004.

[85] X. Zhang, L. van Doorn, T. Jaeger, R. Perez, and R. Sailer, Secure
coprocessor-based intrusion detection, in Proceedings of the 10th workshop on
ACM SIGOPS European workshop, pp. 239–242, ACM, 2002.

[86] J. Molina and W. Arbaugh, Using independent auditors as intrusion detection
systems, in Information and Communications Security, pp. 291–302. Springer,
2002.

[87] H. Moon, H. Lee, J. Lee, K. Kim, Y. Paek, and B. B. Kang, Vigilare: toward
snoop-based kernel integrity monitor, in Proceedings of the 2012 ACM conference
on Computer and communications security, pp. 28–37, ACM, 2012.

[88] B. Schatz, Bodysnatcher: Towards reliable volatile memory acquisition by
software, digital investigation 4 (2007) 126–134.

[89] M. Cohen, D. Bilby, and G. Caronni, Distributed forensics and incident response
in the enterprise, digital investigation 8 (2011) S101–S110.

[90] A. Martin, Firewire memory dump of a windows xp computer: a forensic
approach, Black Hat DC (2007) 1–13.

[91] J. Stüttgen and M. Cohen, Anti-forensic resilient memory acquisition, Digital
Investigation 10 (2013) S105–S115.

[92] S. Bahram, X. Jiang, Z. Wang, M. Grace, J. Li, D. Srinivasan, J. Rhee, and
D. Xu, Dksm: Subverting virtual machine introspection for fun and profit, in
Reliable Distributed Systems, 2010 29th IEEE Symposium on, pp. 82–91, IEEE,
2010.

[93] C. Willems, R. Hund, A. Fobian, D. Felsch, T. Holz, and A. Vasudevan, Down to
the bare metal: Using processor features for binary analysis, in Proceedings of the
28th Annual Computer Security Applications Conference, pp. 189–198, ACM,
2012.

[94] J. Rutkowska, Beyond the cpu: Defeating hardware based ram acquisition,
Proceedings of BlackHat DC 2007 (2007).

[95] D. Aumaitre and C. Devine, Subverting windows 7 x64 kernel with dma attacks,
HITBSecConf 2010 Amsterdam 29 (2010).

[96] P. Stewin and I. Bystrov, Understanding dma malware, in Detection of Intrusions
and Malware, and Vulnerability Assessment, pp. 21–41. Springer, 2013.

142

[97] J. Heasman, Implementing and detecting a pci rootkit, Retrieved February 20
(2006), no. 2007 3.

[98] L. Duflot, Y.-A. Perez, G. Valadon, and O. Levillain, Can you still trust your
network card, CanSecWest/core10 (2010) 24–26.

[99] E. Ladakis, L. Koromilas, G. Vasiliadis, M. Polychronakis, and S. Ioannidis, You
can type, but you can’t hide: A stealthy gpu-based keylogger, in Proceedings of the
6th European Workshop on System Security (EuroSec), 2013.

[100] J. Bowling, Clonezilla: build, clone, repeat, Linux journal 2011 (2011), no. 201 6.

[101] F. Bellard, Qemu, a fast and portable dynamic translator., in USENIX Annual
Technical Conference, FREENIX Track, pp. 41–46, 2005.

[102] I. Habib, Virtualization with kvm, Linux Journal 2008 (2008), no. 166 8.

[103] B. D. Payne, “Libvmi: Simplified virtual machine introspection.”

[104] “libvirt: The virtualization api.” http://libvirt.org/, 06, 2014.

[105] Altera Corporation, “PCI Express High Performance Reference Design.”
http://www.altera.com/literature/an/an456.pdf, 2014.

[106] J. FitzPatrick and M. Crabill, NSA Playset: PCIE, in DEFCON 22, 2014.

[107] P. Stewin, A Primitive for Revealing Stealthy Peripheral-based Attacks on the
Computing Platform’s Main Memory, in Proceedings of the International
Workshop on Recent Advances in Intrusion Detection, pp. 1–20, Springer, 2013.

[108] “Iozone filesystem benchmark.” http://www.iozone.org/, 2006.

[109] J. Wang, K. Sun, and A. Stavrou, A dependability analysis of hardware-assisted
polling integrity checking systems, in Dependable Systems and Networks (DSN),
2012 42nd Annual IEEE/IFIP International Conference on, pp. 1–12, IEEE,
2012.

[110] B. Dees, Native command queuing-advanced performance in desktop storage,
Potentials, IEEE 24 (2005), no. 4 4–7.

[111] M. Cohen and J. Metz, “Pytsk.” https://github.com/py4n6/pytsk, 2014.

[112] B. Blunden, The Rootkit Arsenal. Jones and Barlett Learning, 2 ed., 2013.

[113] “An overview of exploit packs.” http://contagiodump.blogspot.com/2010/
06/overview-of-exploit-packs-update.html, May, 2015.

[114] A. Ortega, “Paranoid fish.” http://github.com/a0rtega/pafish.

143

http://libvirt.org/
http://www.altera.com/literature/an/an456.pdf
http://www.iozone.org/
https://github.com/py4n6/pytsk
http://github.com/a0rtega/pafish

[115] E. Gustafson, M. Muench, C. Spensky, N. Redini, A. Machiry, Y. Fratantonio,
D. Balzarotti, A. Francillon, Y. R. Choe, C. Kruegel, et. al., Toward the analysis
of embedded firmware through automated re-hosting, in 22nd International
Symposium on Research in Attacks, Intrusions and Defenses ({RAID} 2019),
pp. 135–150, 2019.

[116] A. Clements, E. Gustafson, T. Scharnowski, P. Grosen, D. Fritz, C. Kruegel,
G. Vigna, S. Bagchi, and M. Payer, Halucinator: Firmware re-hosting through
abstraction layer emulation, .

[117] F. Comert and T. Ovatman, Attacking state space explosion problem in model
checking embedded tv software, IEEE Transactions on Consumer Electronics 61
(2015), no. 4 572–579.

[118] M. Muench, D. Nisi, A. Francillon, and D. Balzarotti, Avatar2: A multi-target
orchestration platform, in Proc. Workshop Binary Anal. Res.(Colocated NDSS
Symp.), vol. 18, pp. 1–11, 2018.

[119] B. Feng, A. Mera, and L. Lu, P2IM: Scalable and hardware-independent firmware
testing via automatic peripheral interface modeling (extended version), arXiv
preprint arXiv:1909.06472 (2019).

[120] G. Gracioli and S. Fischmeister, Tracing and recording interrupts in embedded
software, Journal of Systems Architecture 58 (2012), no. 9 372–385.

[121] P. S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Hallberg,
J. Hogberg, F. Larsson, A. Moestedt, and B. Werner, Simics: A full system
simulation platform, Computer 35 (2002), no. 2 50–58.

[122] M. Samek, “State machines for event-driven systems.” https://barrgroup.com/

embedded-systems/how-to/state-machines-event-driven-systems, May,
2016.

[123] J. Hopcroft, An n log n algorithm for minimizing states in a finite automaton, in
Theory of machines and computations, pp. 189–196. Elsevier, 1971.

[124] L. Where Labs, “Bus pirate.”
http://dangerousprototypes.com/docs/Bus_Pirate, October, 2019.

[125] J. Grand and J. Friday, Advanced hardware hacking techniques, DEFCON 12
(2004) 59.

[126] C. Lattner and V. Adve, Llvm: A compilation framework for lifelong program
analysis & transformation, in International Symposium on Code Generation and
Optimization, 2004. CGO 2004., pp. 75–86, IEEE, 2004.

144

https://barrgroup.com/embedded-systems/how-to/state-machines-event-driven-systems
https://barrgroup.com/embedded-systems/how-to/state-machines-event-driven-systems
http://dangerousprototypes.com/docs/Bus_Pirate

[127] C. Lattner, Llvm and clang: Next generation compiler technology, in The BSD
conference, vol. 5, 2008.

[128] J. Ganssle, Reentrancy, in The Firmware Handbook, pp. 231–244. Elsevier, 2004.

[129] N. Redini, A. Machiry, R. Wang, C. Spensky, A. Continella, Y. Shoshitaishvili,
C. Kruegel, and G. Vigna, Karonte: Detecting insecure multi-binary interactions
in embedded firmware, in 2020 IEEE Symposium on Security and Privacy (SP),
pp. 431–448.

[130] Atmel, “SAM3X/ SAM3A Series (DATASHEET).”
https://ww1.microchip.com/downloads/en/DeviceDoc/

Atmel-11057-32-bit-Cortex-M3-Microcontroller-SAM3X-SAM3A_Datasheet.

pdf, March, 2015.

[131] A. Limited, “Cortex-m3 technical reference manual (revision r2p1).”
http://users.ece.utexas.edu/~valvano/EE345L/Labs/Fall2011/CortexM3_

TRM_r2p1.pdf, July, 2010.

[132] Geeetech, “Arduino IR Remote Control.”
http://www.geeetech.com/wiki/index.php/Arduino_IR_Remote_Control,
May, 2012.

[133] BARRAGAN, “Sweep.” https://www.arduino.cc/en/Tutorial/Sweep,
November, 2013.

[134] Altium, “Nec infrared transmission protocol.” https://techdocs.altium.com/

display/FPGA/NEC+Infrared+Transmission+Protocol, September, 2017.

[135] D. Benson, “Arduino as a rapid prototyping system.”
https://www.embedded.com/arduino-as-a-rapid-prototyping-system/,
August, 2015.

[136] J. Beningo, “Prototype to production: Arduino for the professional.” https:

//www.edn.com/prototype-to-production-arduino-for-the-professional/,
May, 2016.

[137] Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens, M. Polino, A. Dutcher,
J. Grosen, S. Feng, C. Hauser, C. Kruegel, et. al., Sok:(state of) the art of war:
Offensive techniques in binary analysis, in 2016 IEEE Symposium on Security and
Privacy (SP), pp. 138–157, IEEE, 2016.

[138] M.-C. Hsueh, T. K. Tsai, and R. K. Iyer, Fault injection techniques and tools,
Computer 30 (1997), no. 4 75–82.

[139] M. Witteman and M. Oostdijk, Secure application programming in the presence of
side channel attacks, in RSA conference, vol. 2008, 2008.

145

https://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-11057-32-bit-Cortex-M3-Microcontroller-SAM3X-SAM3A_Datasheet.pdf
https://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-11057-32-bit-Cortex-M3-Microcontroller-SAM3X-SAM3A_Datasheet.pdf
https://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-11057-32-bit-Cortex-M3-Microcontroller-SAM3X-SAM3A_Datasheet.pdf
http://users.ece.utexas.edu/~valvano/EE345L/Labs/Fall2011/CortexM3_TRM_r2p1.pdf
http://users.ece.utexas.edu/~valvano/EE345L/Labs/Fall2011/CortexM3_TRM_r2p1.pdf
http://www.geeetech.com/wiki/index.php/Arduino_IR_Remote_Control
https://www.arduino.cc/en/Tutorial/Sweep
https://techdocs.altium.com/display/FPGA/NEC+Infrared+Transmission+Protocol
https://techdocs.altium.com/display/FPGA/NEC+Infrared+Transmission+Protocol
https://www.embedded.com/arduino-as-a-rapid-prototyping-system/
https://www.edn.com/prototype-to-production-arduino-for-the-professional/
https://www.edn.com/prototype-to-production-arduino-for-the-professional/

[140] M. Dadashi, L. Rashid, K. Pattabiraman, and S. Gopalakrishnan,
Hardware-software integrated diagnosis for intermittent hardware faults, in 2014
44th Annual IEEE/IFIP International Conference on Dependable Systems and
Networks, pp. 363–374, IEEE, 2014.

[141] Y. Lu, Injecting software vulnerabilities with voltage glitching, arXiv preprint
arXiv:1903.08102 (2019).

[142] C. Bozzato, R. Focardi, and F. Palmarini, Shaping the glitch: Optimizing voltage
fault injection attacks, IACR Transactions on Cryptographic Hardware and
Embedded Systems (2019) 199–224.

[143] S. P. Skorobogatov and R. J. Anderson, Optical fault induction attacks, in
International workshop on cryptographic hardware and embedded systems,
pp. 2–12, Springer, 2002.

[144] J. G. Van Woudenberg, M. F. Witteman, and F. Menarini, Practical optical fault
injection on secure microcontrollers, in 2011 Workshop on Fault Diagnosis and
Tolerance in Cryptography, pp. 91–99, IEEE, 2011.

[145] J. Balasch, B. Gierlichs, and I. Verbauwhede, An in-depth and black-box
characterization of the effects of clock glitches on 8-bit mcus, in 2011 Workshop
on Fault Diagnosis and Tolerance in Cryptography, pp. 105–114, IEEE, 2011.

[146] S. Ordas, L. Guillaume-Sage, and P. Maurine, Electromagnetic fault injection: the
curse of flip-flops, Journal of Cryptographic Engineering 7 (2017), no. 3 183–197.

[147] N. Moro, A. Dehbaoui, K. Heydemann, B. Robisson, and E. Encrenaz,
Electromagnetic fault injection: towards a fault model on a 32-bit microcontroller,
in 2013 Workshop on Fault Diagnosis and Tolerance in Cryptography, pp. 77–88,
IEEE, 2013.

[148] E. DeBusschere and M. McCambridge, Modern game console exploitation,
Technical Report, Department of Computer Science, University of Arizona (2012).

[149] N. Timmers and A. Spruyt, Bypassing secure boot using fault injection, Black Hat
Europe 2016 (2016).

[150] N. Timmers and C. Mune, Escalating privileges in linux using voltage fault
injection, in 2017 Workshop on Fault Diagnosis and Tolerance in Cryptography
(FDTC), pp. 1–8, IEEE, 2017.

[151] N. Timmers, A. Spruyt, and M. Witteman, Controlling pc on arm using fault
injection, in 2016 Workshop on Fault Diagnosis and Tolerance in Cryptography
(FDTC), pp. 25–35, IEEE, 2016.

146

[152] J. Gratchoff, N. Timmers, A. Spruyt, and L. Chmielewski, Proving the wild jungle
jump, .

[153] C. O’Flynn and Z. D. Chen, Chipwhisperer: An open-source platform for
hardware embedded security research, in International Workshop on Constructive
Side-Channel Analysis and Secure Design, pp. 243–260, Springer, 2014.

[154] J. W. Duran and S. Ntafos, A report on random testing, in Proceedings of the 5th
international conference on Software engineering, pp. 179–183, IEEE Press, 1981.

[155] H. Bar-El, H. Choukri, D. Naccache, M. Tunstall, and C. Whelan, The sorcerer’s
apprentice guide to fault attacks, Proceedings of the IEEE 94 (2006), no. 2
370–382.

[156] D. Song, J. Lettner, P. Rajasekaran, Y. Na, S. Volckaert, P. Larsen, and
M. Franz, Sok: sanitizing for security, IEEE Security and Privacy (2019).

[157] “American fuzzy lop.” http://lcamtuf.coredump.cx/afl/.

[158] P. Kocher, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp, S. Mangard,
T. Prescher, M. Schwarz, and Y. Yarom, Spectre attacks: Exploiting speculative
execution, arXiv preprint arXiv:1801.01203 (2018).

[159] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, S. Mangard, P. Kocher,
D. Genkin, Y. Yarom, and M. Hamburg, Meltdown, arXiv preprint
arXiv:1801.01207 (2018).

[160] M. Seaborn and T. Dullien, Exploiting the dram rowhammer bug to gain kernel
privileges, Black Hat 15 (2015).

[161] Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee, C. Wilkerson, K. Lai, and
O. Mutlu, Flipping bits in memory without accessing them: An experimental study
of dram disturbance errors, in ACM SIGARCH Computer Architecture News,
vol. 42, pp. 361–372, IEEE Press, 2014.

[162] R. Omarouayache, J. Raoult, S. Jarrix, L. Chusseau, and P. Maurine, Magnetic
microprobe design for em fault attack, in 2013 International Symposium on
Electromagnetic Compatibility, pp. 949–954, IEEE, 2013.

[163] A. Barenghi, G. Bertoni, E. Parrinello, and G. Pelosi, Low voltage fault attacks on
the rsa cryptosystem, in 2009 Workshop on Fault Diagnosis and Tolerance in
Cryptography (FDTC), pp. 23–31, IEEE, 2009.

[164] J.-M. Schmidt and C. Herbst, A practical fault attack on square and multiply, in
2008 5th Workshop on Fault Diagnosis and Tolerance in Cryptography, pp. 53–58,
IEEE, 2008.

147

http://lcamtuf.coredump.cx/afl/

[165] A. Barenghi, G. M. Bertoni, L. Breveglieri, M. Pellicioli, and G. Pelosi, Low
voltage fault attacks to aes, in 2010 IEEE International Symposium on
Hardware-Oriented Security and Trust (HOST), pp. 7–12, IEEE, 2010.

[166] C. O’Flynn, Fault injection using crowbars on embedded systems., IACR
Cryptology ePrint Archive 2016 (2016) 810.

[167] A. G. Yanci, S. Pickles, and T. Arslan, Detecting voltage glitch attacks on secure
devices, in 2008 Bio-inspired, Learning and Intelligent Systems for Security,
pp. 75–80, IEEE, 2008.

[168] F. Rodŕıguez, J. C. Campelo, and J. J. Serrano, A watchdog processor
architecture with minimal performance overhead, in International Conference on
Computer Safety, Reliability, and Security, pp. 261–272, Springer, 2002.

[169] D. Arora, S. Ravi, A. Raghunathan, and N. K. Jha, Hardware-assisted run-time
monitoring for secure program execution on embedded processors, IEEE
Transactions on Very Large Scale Integration (VLSI) Systems 14 (2006), no. 12
1295–1308.

[170] F. Rodŕıguez and J. J. Serrano, Control flow error checking with isis, in
International Conference on Embedded Software and Systems, pp. 659–670,
Springer, 2005.

[171] M. Werner, E. Wenger, and S. Mangard, Protecting the control flow of embedded
processors against fault attacks, in International Conference on Smart Card
Research and Advanced Applications, pp. 161–176, Springer, 2015.

[172] N. Moro, K. Heydemann, A. Dehbaoui, B. Robisson, and E. Encrenaz,
Experimental evaluation of two software countermeasures against fault attacks, in
2014 IEEE International Symposium on Hardware-Oriented Security and Trust
(HOST), pp. 112–117, IEEE, 2014.

[173] A. Spruyt, Building fault models for microcontrollers, University of Amsterdam,
Amsterdam, Tech. Rep (2012) 2011–2012.

[174] G. Thessalonikefs, Electromagnetic fault injection characterization, .

[175] T. Korak and M. Hoefler, On the effects of clock and power supply tampering on
two microcontroller platforms, in 2014 Workshop on Fault Diagnosis and
Tolerance in Cryptography, pp. 8–17, IEEE, 2014.

[176] L. Zussa, J.-M. Dutertre, J. Clediere, and A. Tria, Power supply glitch induced
faults on fpga: An in-depth analysis of the injection mechanism, in 2013 IEEE
19th International On-Line Testing Symposium (IOLTS), pp. 110–115, IEEE,
2013.

148

[177] L. Riviere, Z. Najm, P. Rauzy, J.-L. Danger, J. Bringer, and L. Sauvage, High
precision fault injections on the instruction cache of armv7-m architectures, in
2015 IEEE International Symposium on Hardware Oriented Security and Trust
(HOST), pp. 62–67, IEEE, 2015.

[178] M. Hutter and J.-M. Schmidt, The temperature side channel and heating fault
attacks, in International Conference on Smart Card Research and Advanced
Applications, pp. 219–235, Springer, 2013.

[179] T. Korak, M. Hutter, B. Ege, and L. Batina, Clock glitch attacks in the presence
of heating, in 2014 Workshop on Fault Diagnosis and Tolerance in Cryptography,
pp. 104–114, IEEE, 2014.

[180] A. Q. Nguyen and H. V. Dang, Unicorn: Next generation cpu emulator
framework, in Proceedings of the 2015 Blackhat USA conference, 2015.

[181] N. A. Quynh, Capstone: Next generation disassembly framework, Black Hat USA
(2014).

[182] N. A. Quynh, Keystone: Next generation assembler framework, Black Hat USA
(2016).

[183] A. ARM7TDMI, Technical reference manual, Advanced RISC Machines Ltd.,(15
May 2003).

[184] C.-K. Chang, G. Li, and M. Erez, Evaluating compiler ir-level selective instruction
duplication with realistic hardware errors, in 2019 IEEE/ACM 9th Workshop on
Fault Tolerance for HPC at eXtreme Scale (FTXS), pp. 41–49, IEEE, 2019.

[185] M. Milshtein, A new two-error-correcting binary code of length 16, Cryptography
and Communications (2019) 1–5.

[186] M. Lubinets, “Reed solomon bch encoder and decoder.”
https://github.com/mersinvald/Reed-Solomon, Februrary, 2016.

[187] L. Cojocar, K. Papagiannopoulos, and N. Timmers, Instruction duplication:
Leaky and not too fault-tolerant!, in International Conference on Smart Card
Research and Advanced Applications, pp. 160–179, Springer, 2017.

[188] G. Li, K. Pattabiraman, S. K. S. Hari, M. Sullivan, and T. Tsai, Modeling
soft-error propagation in programs, in 2018 48th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN), pp. 27–38, IEEE, 2018.

[189] G. Li, Q. Lu, and K. Pattabiraman, Fine-grained characterization of faults
causing long latency crashes in programs, in 2015 45th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks, pp. 450–461,
IEEE, 2015.

149

https://github.com/mersinvald/Reed-Solomon

[190] T. Chen, “Guarding against physical attacks: The xbox one story.”
https://www.platformsecuritysummit.com/2019/speaker/chen/, October,
2019.

[191] A. Vasudevan and R. Yerraballi, Stealth Breakpoints, in Proceedings of the 21st
Annual Computer Security Applications Conference (ACSAC’05), 2005.

[192] N. A. Quynh and K. Suzaki, Virt-ICE: Next-generation Debugger for Malware
Analysis, in Black Hat USA, 2010.

[193] IDA Pro. www.hex-rays.com/products/ida/.

[194] “OllyDbg.” www.ollydbg.de.

[195] D. Bruening, Q. Zhao, and S. Amarasinghe, Transparent Dynamic
Instrumentation, in Proceedings of the 8th Conference on Virtual Execution
Environments (VEE), ACM SIGPLAN/SIGOPS, 2012.

[196] “Windbg.” www.windbg.org.

[197] S. M. S. Talebi, H. Tavakoli, H. Zhang, Z. Zhang, A. A. Sani, and Z. Qian,
Charm: Facilitating dynamic analysis of device drivers of mobile systems, in 27th
{USENIX} Security Symposium ({USENIX} Security 18), pp. 291–307, 2018.

[198] M. Kammerstetter, C. Platzer, and W. Kastner, Prospect: peripheral proxying
supported embedded code testing, in Proceedings of the 9th ACM symposium on
Information, computer and communications security, pp. 329–340, ACM, 2014.

[199] M. Kammerstetter, D. Burian, and W. Kastner, Embedded security testing with
peripheral device caching and runtime program state approximation, in 10th
International Conference on Emerging Security Information, Systems and
Technologies (SECUWARE), 2016.

[200] L. Harrison, H. Vijayakumar, R. Padhye, K. Sen, M. Grace, R. Padhye,
C. Lemieux, K. Sen, L. Simon, H. Vijayakumar, et. al., Partemu: Enabling
dynamic analysis of real-world trustzone software using emulation, in Proceedings
of the 29th USENIX Security Symposium (USENIX Security 2020)(To Appear),
2020.

[201] I. Pustogarov, Q. Wu, and D. Lie, Ex-vivo dynamic analysis framework for
android device drivers, .

[202] N. Moro, K. Heydemann, E. Encrenaz, and B. Robisson, Formal verification of a
software countermeasure against instruction skip attacks, Journal of
Cryptographic Engineering 4 (2014), no. 3 145–156.

150

https://www.platformsecuritysummit.com/2019/speaker/chen/
www.hex-rays.com/products/ida/
www.ollydbg.de
www.windbg.org

[203] A. Barenghi, L. Breveglieri, I. Koren, G. Pelosi, and F. Regazzoni,
Countermeasures against fault attacks on software implemented aes: effectiveness
and cost, in Proceedings of the 5th Workshop on Embedded Systems Security, p. 7,
ACM, 2010.

[204] J.-F. Lalande, K. Heydemann, and P. Berthomé, Software countermeasures for
control flow integrity of smart card c codes, in European Symposium on Research
in Computer Security, pp. 200–218, Springer, 2014.

[205] Z. Chen, J. Shen, A. Nicolau, A. Veidenbaum, N. F. Ghalaty, and R. Cammarota,
Camfas: A compiler approach to mitigate fault attacks via enhanced simdization,
in 2017 Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC),
pp. 57–64, IEEE, 2017.

[206] R. J. Gove, K. Balmer, N. K. Ing-Simmons, and K. M. Guttag, Multi-processor
reconfigurable in single instruction multiple data (simd) and multiple instruction
multiple data (mimd) modes and method of operation, May 18, 1993. US Patent
5,212,777.

[207] P. Junod, J. Rinaldini, J. Wehrli, and J. Michielin, Obfuscator-LLVM – software
protection for the masses, in Proceedings of the IEEE/ACM 1st International
Workshop on Software Protection, SPRO’15, Firenze, Italy, May 19th, 2015
(B. Wyseur, ed.), pp. 3–9, IEEE, 2015.

[208] A. Höller, G. Macher, T. Rauter, J. Iber, and C. Kreiner, A virtual fault injection
framework for reliability-aware software development, in 2015 IEEE International
Conference on Dependable Systems and Networks Workshops, pp. 69–74, IEEE,
2015.

[209] F. de Aguiar Geissler, F. L. Kastensmidt, and J. E. P. Souza, Soft error injection
methodology based on qemu software platform, in 2014 15th Latin American Test
Workshop-LATW, pp. 1–5, IEEE, 2014.

[210] N. Theißing, D. Merli, M. Smola, F. Stumpf, and G. Sigl, Comprehensive analysis
of software countermeasures against fault attacks, in 2013 Design, Automation &
Test in Europe Conference & Exhibition (DATE), pp. 404–409, IEEE, 2013.

151

	Curriculum Vitae
	Abstract
	Introduction
	Permissions and Attributions

	The State of Embedded Systems Security
	Low-Artifact Analysis Using Hardware Introspection
	Introduction
	Background and Threat Model
	System Implementation
	Artifacts
	Limitations
	Experimental Framework
	Evaluation and Analysis
	Future Work
	Conclusion

	Enabling Full-system Emulation of Embedded Systems
	Introduction
	Background
	System Design
	Evaluation
	Discussion and Future Work
	Conclusion

	Protecting Embedded Systems from Physical Attacks
	Introduction
	Background
	Glitching Effects
	Threat Model
	Glitching Effects in Emulation
	Real-world Glitching
	Glitching Defenses
	Evaluation of Defenses
	Conclusion

	Related Work
	LO-PHI
	Conware
	GlitchResistor

	Future Research Directions
	Continuous Introspection
	Unglitchable Hardware
	Automated Embedded System Emulation

	Final Thoughts
	Bibliography

