
This paper is included in the Proceedings of the
26th USENIX Security Symposium
August 16–18, 2017 • Vancouver, BC, Canada

ISBN 978-1-931971-40-9

Open access to the Proceedings of the
26th USENIX Security Symposium

is sponsored by USENIX

DR. CHECKER: A Soundy Analysis
for Linux Kernel Drivers

Aravind Machiry, Chad Spensky, Jake Corina, Nick Stephens,
Christopher Kruegel, and Giovanni Vigna, UC Santa Barbara

https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/machiry

DR. CHECKER: A Soundy Analysis for Linux Kernel Drivers

Aravind Machiry, Chad Spensky, Jake Corina, Nick Stephens,
Christopher Kruegel, and Giovanni Vigna

{machiry, cspensky, jcorina, stephens, chris, vigna}@cs.ucsb.edu
University of California, Santa Barbara

Abstract

While kernel drivers have long been know to poses huge
security risks, due to their privileged access and lower
code quality, bug-finding tools for drivers are still greatly
lacking both in quantity and effectiveness. This is be-
cause the pointer-heavy code in these drivers present
some of the hardest challenges to static analysis, and
their tight coupling with the hardware make dynamic
analysis infeasible in most cases. In this work, we
present DR. CHECKER, a soundy (i.e., mostly sound)
bug-finding tool for Linux kernel drivers that is based on
well-known program analysis techniques. We are able to
overcome many of the inherent limitations of static anal-
ysis by scoping our analysis to only the most bug-prone
parts of the kernel (i.e., the drivers), and by only sac-
rificing soundness in very few cases to ensure that our
technique is both scalable and precise. DR. CHECKER is
a fully-automated static analysis tool capable of perform-
ing general bug finding using both pointer and taint anal-
yses that are flow-sensitive, context-sensitive, and field-
sensitive on kernel drivers. To demonstrate the scala-
bility and efficacy of DR. CHECKER, we analyzed the
drivers of nine production Linux kernels (3.1 million
LOC), where it correctly identified 158 critical zero-day
bugs with an overall precision of 78%.

1 Introduction

Bugs in kernel-level code can be particularly problem-
atic in practice, as they can lead to severe vulnerabil-
ities, which can compromise the security of the entire
computing system (e.g., Dirty COW [5]). This fact has
not been overlooked by the security community, and a
significant amount of effort has been placed on verify-
ing the security of this critical code by means of man-
ual inspection and both static and dynamic analysis tech-
niques. While manual inspection has yielded the best
results historically, it can be extremely time consuming,

and is quickly becoming intractable as the complexity
and volume of kernel-level code increase. Low-level
code, such as kernel drivers, introduce a variety of hard
problems that must be overcome by dynamic analysis
tools (e.g., handling hardware peripherals). While some
kernel-level dynamic analysis techniques have been pro-
posed [23, 25, 29, 46], they are ill-suited for bug-finding
as they were implemented as kernel monitors, not code
verification tools. Thus, static source code analysis has
long prevailed as the most promising technique for kernel
code verification and bug-finding, since it only requires
access to the source code, which is typically available.

Unfortunately, kernel code is a worst-case scenario
for static analysis because of the liberal use of pointers
(i.e., both function and arguments are frequently passed
as pointers). As a result, tool builders must make the
tradeoff between precision (i.e., reporting too many false
positives) and soundness (i.e., reporting all true posi-
tives). In practice, precise static analysis techniques have
struggled because they are either computationally infea-
sible (i.e., because of the state explosion problem), or too
specific (i.e., they only identify a very specific type of
bug). Similarly, sound static analysis techniques, while
capable of reporting all bugs, suffer from extremely high
false-positive rates. This has forced researchers to make
variety of assumptions in order to implement practical
analysis techniques. One empirical study [14] found that
users would ignore a tool if its false positive rate was
higher than 30%, and would similarly discredit the anal-
ysis if it did not yield valuable results early in its use
(e.g., within the first three warnings).

Nevertheless, numerous successful tools have been
developed (e.g., Coverity [14], Linux Driver Verifica-
tion [36], APISan [64]), and have provided invaluable
insights into both the types and locations of bugs that
exist in critical kernel code. These tools range from pre-
cise, unsound, tools capable of detecting very specific
classes of bugs (e.g., data leakages [32], proper fprintf
usage [22], user pointer deferences [16]) to sound, im-

USENIX Association 26th USENIX Security Symposium 1007

precise, techniques that detect large classes of bugs (e.g.,
finding all usages of strcpy [55]). One notable finding
early on was that a disproportionate number of errors in
the kernel were found in the drivers, or modules. It was
shown that drivers accounted for seven times more bugs
than core code in Linux [19] and 85% of the crashes
in Windows XP [49]. These staggering numbers were
attributed to lower overall code quality in drivers and im-
proper implementations of the complex interactions with
the kernel core by the third party supplying the driver.

In 2011, Palix et al. [39] analyzed the Linux kernel
again and showed that while drivers still accounted for
the greatest number of bugs, which is likely because
drivers make up 57% of the total code, the fault rates for
drivers where no longer the highest. Our recent analy-
sis of main line linux kernel commit messages found that
28% of CVE patches to the linux repository in the past
year involved kernel drivers (19% since 2005), which is
in line with previous studies [17]. Meanwhile, the mo-
bile domain has seen an explosion of new devices, and
thus new drivers, introduced in recent years. The lack of
attention being paid to these drivers, and their potential
danger to the security of the devices, has also not gone
unnoticed [47]. Recent studies even purport that mobile
kernel drivers are, again, the source of up to 85% of the
reported bugs in the Android [48] kernel. Yet, we are
unaware of any large-scale analysis of these drivers.

In this work, we present DR. CHECKER, a fully-
automated static-analysis tool capable of identifying
numerous classes of bugs in Linux kernel drivers.
DR. CHECKER is implemented as a completely modu-
lar framework, where both the types of analyses (e.g.,
points-to or taint) and the bug detectors (e.g., integer
overflow or memory corruption detection) can be eas-
ily augmented. Our tool is based on well-known pro-
gram analysis techniques and is capable of performing
both pointer and taint analysis that is flow-, context-, and
field-sensitive. DR. CHECKER employs a soundy [31]
approach, which means that our technique is mostly
sound, aside from a few well-defined assumptions that
violate soundness in order to achieve a higher precision.
DR. CHECKER, is the first (self-proclaimed) soundy
static-analysis-based bug-finding tool, and, similarly, the
first static analysis tool capable of large-scale analysis
of general classes of bugs in driver code. We evaluated
DR. CHECKER by analyzing nine popular mobile device
kernels, 3.1 million lines of code (LOC), where it cor-
rectly reported 3,973 flaws and resulted the discovery of
158 [6–10] previously unknown bugs. We also compared
DR. CHECKER against four other popular static analy-
sis tools, where it significantly outperformed all of them
both in detection rates and total bugs identified. Our re-
sults show that DR. CHECKER not only produces useful
results, but does so with extremely high precision (78%).

In summary, we claim the following contributions:

• We present the first soundy static-analysis technique
for pointer and taint analysis capable of large-scale
analysis of Linux kernel drivers.

• We show that our technique is capable of flow-
sensitive, context-sensitive, and field-sensitive anal-
ysis in a pluggable and general way that can easily
be adapted to new classes of bugs.

• We evaluated our tool by analyzing the drivers of
nine modern mobile devices, which resulted in the
discovery of 158 zero-day bugs.

• We compare our tool to the existing state-of-the-
art tools and show that we are capable of detecting
more bugs with significantly higher precision, and
with high-fidelity warnings.

• We are releasing DR. CHECKER as an open-source
tool at github.com/ucsb-seclab/dr_checker.

2 Background

Kernel bug-finding tools have been continuously evolv-
ing as both the complexity and sheer volume of code in
the world increases. While manual analysis and grep

may have been sufficient for fortifying the early versions
of the Linux kernel, these techniques are neither scalable
nor rigorous enough to protect the kernels that are on our
systems today. Ultimately, all of these tools are devel-
oped to raise warnings, which are then examined by a
human analyst. Most of the initial, and more successful
bug-finding tools were based on grep-like functionality
and pattern matching [45,55,57]. These tools evolved to
reduce user interaction (i.e., removing the need for man-
ual annotation of source code) by using machine learn-
ing and complex data structures to automatically identify
potential dangerous portions of code [41, 59–63]. While
these tools have been shown to return useful results, iden-
tifying a number of critical bugs, most of them are de-
veloped based on empirical observation, without strong
formal guarantees.

Model checkers (e.g., SLAM [13], BLAST [27],
MOPS [18]) provide much more context and were able
to provide more formalization, resulting in the detec-
tion of more interesting flaws. However, these tech-
niques soon evolved into more rigorous tools, capable
of more complex analyses (e.g., path-sensitive ESP [22])
and the more recent tools are capable of extracting far
more information about the programs being analyzed to
perform even more in-depth analysis (e.g., taint analy-
sis [61]). While some have been implemented on top of
custom tools and data structures (e.g., Joern [59–62]),

1008 26th USENIX Security Symposium USENIX Association

others have been implemented as compiler-level opti-
mizations on top of popular open-source projects (e.g.,
LLVM [32]). In all cases, these tools are operating on
abstract representations of the program, such as the ab-
stract syntax tree (AST) or the control flow graph (CFG),
which permit a more rigorous formal analysis of the
properties of the program.

Motivation. Before delving into the details of
DR. CHECKER, we first present a motivating ex-
ample in the form of a bug that was discovered by
DR. CHECKER. In this bug, which is presented
in Listing 1, a tainted structure is copied in from
userspace using copy from user. A size field of
this structure is then multiplied by the size of another
driver structure (flow p.cnt * sizeof(struct

bst traffic flow prop)), which is vulnerable to an
integer overflow. This bug results in a much smaller
buffer being allocated that would actually be required
for the data. This overflow would not be particularly
problematic if it wasn’t for the fact that the originally
tainted length (i.e., the very large number) is later
used to determine how much data will be copied in

Listing 1: An integer overflow in Huawei’s Bastet driver
that was discovered by DR. CHECKER
1 s t r u c t b s t t r a f f i c f l o w p k g {
2 u i n t 3 2 t c n t ;
3 u i n t 8 t v a l u e [0] ;
4 } ;
5 . . .
6 u i n t 8 t ∗buf = NULL;
7 i n t b u f l e n = 0 ;
8 s t r u c t b s t t r a f f i c f l o w p k g f l o w p ;
9

10 i f (c o p y f r o m u s e r (& f low p , a rgp ,
11 s i z e o f (s t r u c t b s t t r a f f i c f l o w p k g))) {
12 b r e a k ;
13 }
14

15 i f (0 == f l o w p . c n t) {
16 b a s t e t w a k e u p t r a f f i c f l o w () ;
17 r c = 0 ;
18 b r e a k ;
19 }
20

21 / / ∗∗ I n t e g e r o v e r f l o w bug ∗∗
22 / / e . g . , 0 x80000001 ∗ 0 x20 = 0 x20
23 b u f l e n = f l o w p . c n t ∗
24 s i z e o f (s t r u c t b s t t r a f f i c f l o w p r o p) ;
25 buf = (u i n t 8 t ∗) kma l loc (b u f l e n , GFP KERNEL) ;
26 i f (NULL == buf) {
27 BASTET LOGE(” kmal loc f a i l e d ”) ;
28 r c = -ENOMEM;
29 b r e a k ;
30 }
31

32 i f (c o p y f r o m u s e r (buf ,
33 a rgp + s i z e o f (s t r u c t b s t t r a f f i c f l o w p k g) ,
34 b u f l e n)) {
35 BASTET LOGE(” pkg c o p y f r o m u s e r e r r o r ”) ;
36 k f r e e (buf) ;
37 b r e a k ;
38 }
39 / / M o d i f i e s f l o w p . cn t , n o t b u f l e n , b y t e s i n b u f !
40 r c = a d j u s t t r a f f i c f l o w b y p k g (buf , f l o w p . c n t) ;
41 . . .

the buffer (adjust traffic flow by pkg(buf,

flow p.cnt)), resulting in memory corruption.
There are many notable quirks in this bug that make

it prohibitively difficult for naı̈ve static analysis tech-
niques. First, the bug arises from tainted-data (i.e.,
argp) propagating through multiple usages into a dan-
gerous function, which is only detectable by a flow-
sensitive analysis. Second, the integer overflow oc-
curs because of a specific field in the user-provided
struct, not the entire buffer. Thus, any analysis
that is not field sensitive would over-approximate this
and incorrectly identify flow p as the culprit. Fi-
nally, the memory corruption in a different function (i.e.,
adjust traffic flow by pkg), which means that that
the analysis must be able to handle inter-procedural calls
in a context-sensitive way to precisely report the origin of
the tainted data. Thus, this bug is likely only possible to
detect and report concisely with an analysis that is flow-,
context-, and field-sensitive. Moreover, the fact that this
bug exists in the driver of a popular mobile device, shows
that it evaded both expert analysts and possibly existing
bug-finding tools.

3 Analysis Design

DR. CHECKER uses a modular interface for its analyses.
This is done by performing a general analysis pass over
the code, and invoking analysis clients at specific points
throughout the analysis. These analysis clients all share
the same global state, and benefit from each other’s re-
sults. Once the analysis clients have run and updated the
global state of the analysis, we then employ numerous
vulnerability detectors, which identify specific properties
of known bugs and raise warnings (e.g., a tainted pointer
was used as input to a dangerous function). The general
architecture of DR. CHECKER is depicted in Figure 1,
and the details of our analysis and vulnerability detec-
tors are outlined in the following sections.

Below we briefly outline a few of our core assump-
tions that contribute to our soundy analysis design:

Assumption 1. We assume that all of the code in the
mainline Linux core is implemented perfectly, and we do
not perform any inter-procedural analysis on any kernel
application program interface (API) calls.

Assumption 2. We only perform the number of traver-
sals required for a reach-def analysis in loops, which
could result in our points-to analysis being unsound.

Assumption 3. Each call instruction will be traversed
only once, even in the case of loops. This is to avoid cre-
ating additional contexts and limit false positives, which
may result in our analysis being unsound.

USENIX Association 26th USENIX Security Symposium 1009

Analysis ClientsSDTraversal

Global State

Vulnerability
Detectors

Points-to

Taint

warnings

1

2

3

Driver Code

Figure 1: Pluggable static analysis architecture implemented by DR. CHECKER.

3.1 Terminology and Definitions
In this section we define the various terms and concepts
that we use in the description of our analysis.

Definition 3.1. A control flow graph (CFG) of a func-
tion is a directed graph where each node represents a ba-
sic block (i.e., a contiguous sequence of non-branch in-
structions) and the edges of the graph represent possible
control flow between the basic blocks.

Definition 3.2. A strongly connected component (SCC)
of a graph is a sub-graph, where there exists a bi-
directional path between any pair of nodes (e.g., a loop).

Definition 3.3. Topological sort or ordering of nodes in
a directed graph is an ordering of nodes such that, for ev-
ery edge from node v to u, v is traversed before u. While
this is well-defined for acyclic graphs, it is less straight-
forward for cyclic graphs (e.g., a CFG with loops). Thus,
when performing a topological sort on a CFG, we em-
ploy Tarjan’s algorithm [50], which instead topologically
sorts the SCCs.

Definition 3.4. An entry function, ε , is a function that
is called with at least one of its arguments containing
tainted data (e.g., an ioctl call).

Definition 3.5. The context, ∆, of a function in our anal-
ysis is an ordered list of call sites (e.g., function calls on
the stack) starting from an entry function. This list in-
dicates the sequence of function calls and their locations
in the code that are required to reach the given function.
More precisely, ∆ = {ε,c1,c2, ...} where c1 is call made
from within the entry function (ε) and for all i > 1, ci
is a call instruction in the function associated with the
previous call instruction (ci−1).

Definition 3.6. The global taint trace map, τ , contains
the information about our tainted values in the analysis.
It maps a specific value to the sequence of instructions (I)
whose execution resulted in the value becoming tainted.

τ :

{
v→{I1, I2, I3, ...} if TAINTED
v→ /0 otherwise

Definition 3.7. An alias object, â= {ρ, t}, is a tuple that
consists of a map (ρ) between offsets into that object, n,
and the other corresponding alias objects that those off-
sets can point to, as well as a local taint map (t) for each
offset. For example, this can be used to represent a struc-
ture stored in a static location, representing an alias ob-
ject, which contains pointers at given offsets (i.e., offsets
into that object) to other locations on the stack (i.e., their
alias objects). More precisely, ρ : n → {â1, â2, â3, ...}
and t : n→{I1, I2, I3, ...}. We use both â(n) and ρ(n) in-
terchangeably, to indicate that we are fetching all of the
alias objects that could be pointed to by a field at offset
n. We use ât to refer to the taint map of location â, and
similarly ât(n) to refer to taint at a specific offset. These
maps allow us to differentiate between different fields of
a structure to provide field-sensitivity in our analysis.

The following types of locations are traced by our
analysis:

1. Function local variables (or stack locations): We
maintain an alias object for each local variable.

2. Dynamically allocated variables (or heap loca-
tions): These are the locations that are dynamically
allocated on the program heap (e.g., as retrieved by
malloc or get page). We similarly create one alias
object for each allocation site.

3. Global variables: Each global variable is assigned a
unique alias object.

Stack and heap locations are both context-sensitive
(i.e., multiple invocations of a function with different
contexts will have different alias objects). Furthermore,
because of our context propagation, heap locations are
call-site sensitive (i.e., for a given context, one object will
be created for each call site of an allocation function).

Definition 3.8. Our points-to map, φ , is the map between
a value and all of the possible locations that it can point
to, represented as a set of tuples containing alias objects
and offsets into those objects.

φ : v→{(n1, â1),(n1, â2),(n2, â3), ...}

1010 26th USENIX Security Symposium USENIX Association

For example, consider the instruction val1 =

&info->dirmap, where info represents a structure on
the stack and member dirmap is at offset 8. This in-
struction would result in the value (val1) pointing to
the offset 8 within the alias object info (i.e., φ(val1) =
{(8,info)}).

Definition 3.9. The Global State, S, of our analysis con-
tains all of the information computed for every function,
at every context. We define it as

S = {φc,τc},

where φc : ∆→ φ is the map between a context and the
corresponding points-to map, and τc : ∆→ τ is the map
between a context and corresponding taint trace map.

3.2 Soundy Driver Traversal (SDT)
While most of the existing static analysis techniques [13,
28] run their abstract analysis until it reaches a fixed-
point before performing bug detection, this can be prob-
lematic when running multiple analyses, as the different
analyses may not have the same precision. Thus, by per-
forming analysis on the post-completion results, these
tools are fundamentally limiting the precision of all of
their analyses to the precision of the least precise analy-
sis. To avoid this, and ensure the highest precision for all
of our analysis modules, we perform a flow-sensitive and
context-sensitive traversal of the driver starting from an
entry point. Our specific analysis modules (i.e., taint and
points-to) are implemented as clients in this framework,
and are invoked with the corresponding context and cur-
rent global state as the code is being traversed. This also
allows all of the analyses, or clients, to consume each
other’s results whenever the results are needed, and with-
out loss of precision. Moreover, this allows us to perform
a single traversal of the program for all of the underlying
clients.

It is important to note that some of the client analy-
ses may actually need more traversals through the CFG
than others to reach a fixed point. For example, a points-
to analysis might need more traversals through a loop
to reach a fixed point than a taint analysis. However,
our code exploration is analysis-agnostic, which means
we must ensure that we always perform the maximum
number of traversals required by all of our analyses. To
ensure this property, we use reach-def analysis [38] as
a baseline (i.e., we traverse the basic blocks such that
a reaching definition analysis will reach a fixed point).
This ensures that all of the writes that can reach an in-
struction directly will be reached. This means that our
points-to analysis may not converge, as it would likely
require far more iterations. However, in the worst case,
points-to analysis could potentially grow unconstrained,

Algorithm 1: Soundy driver traversal analysis
function SDTraversal((S, ∆, F))

sccs← topo sort(CFG(F))
forall the scc ∈ sccs do

if is loop(scc) then
HANDLELOOP(S, ∆, scc)

else
VISITSCC(S, ∆, scc)

end
end

function VisitSCC((S, ∆, scc))
forall the bb ∈ scc do

forall the I ∈ bb do
if is call(I) then

HANDLECALL(S, ∆, I)
else

if is ret(I) then
S← S∪{φ∆(ret val),τ∆(ret val)}

else
DISPATCHCLIENTS(S, ∆, I)

end
end

end
end

function HandleLoop((S, ∆, scc))
num runs← LongestUseDe fChain(scc)
while num runs 6= 0 do

VISITSCC(S, ∆, scc)
num runs← num runs−1

end

function HandleCall((S, ∆, I))
if ¬is visited(S,∆, I) then

targets← resolve call(I)
forall the f ∈ targets do

∆new← ∆||I
φnew← (∆new→ (φc(∆)(args),φc(∆)(globals)))
τnew← (∆new→ (τc(∆)(args),τc(∆)(globals)))
Snew←{φnew,τnew}
SDTRAVERSAL(Snew, ∆new, f)

end
mark visited(S,∆, I)

end

resulting in everything pointing to everything. Thus, we
make this necessary sacrifice to soundness to ensure con-
vergence and a practical implementation.

Loops. When handling loops, we must ensure that we
iterate over the loop enough times to ensure that every
possible assignment of every variable has been exercised.
Thus, we must compute the number of iterations needed

USENIX Association 26th USENIX Security Symposium 1011

for a reach-def analysis to reach a fix-point on the loop
and then perform the corresponding number of iterations
on all the basic blocks in the loop. Note that, the num-
ber of iterations to converge on a loop for a standard
reach-def analysis is upper-bounded by the longest use-
def chain in the loop (i.e., the longest number of instruc-
tions between the assignment and usage of a variable).
The intuition behind this is that, in the worst case, every
instruction could potentially depend on the variable in
the use-def chain, such that their potential values could
update in each loop. However, this can only happen as
many times as their are instructions, since an assignment
can only happen once per instruction.

Function calls. If a function call is a direct invoca-
tion and the target function is within the code that we
are analyzing (i.e., it is part of the driver), it will be
traversed with a new context (∆new), and the state will
be both updated with a new points-to map (ρnew) and
a new taint trace map (τnew), which contains informa-
tion about both the function arguments and the global
variables. For indirect function calls (i.e., functions
that are invoked via a pointer), we use type-based tar-
get resolution. That is, given a function pointer of type
a = (rettype)(arg1Type, arg2Type,..), we find
all of the matching functions in the same driver that are
referenced in a non-call instruction (e.g., void *ptr =

&fn). This is implemented as the function resolve call
in Algorithm 1. Each call site or call instruction will be
analyzed only once per context. We do not employ any
special handlers for recursive functions, as recursion is
rarely used in kernel drivers.

The complete algorithm, SDTraversal, is depicted in
Algorithm 1. We start by topologically sorting the CFG
of the function to get an ordered list of SCCs. Then, each
SCC is handled differently, depending on whether it is a
loop or not. Every SCC is traversed at the basic-block
level, where every instruction in the basic block is pro-
vided to all of the possible clients (i.e., taint and points-
to), along with the context and global state. The client
analyses can collect and maintain any required informa-
tion in the global state, making the information immedi-
ately available to each other.

To analyze a driver entry point ε , we first create an
initial state: Sstart = {φstart , /0}, where φstart contains the
points-to map for all of the global variables. We then
traverse all of the .init functions of the driver (i.e.,
the functions responsible for driver initialization [44]),
which is where drivers will initialize most of their global
objects. The resulting initialized state (Sinit) is then ap-
pended with the taint map for any tainted arguments
(Sinit = Sinit ∪ τinit). We describe how we determine
these tainted arguments in Section 5.3. Finally, we in-

voke our traversal on this function, SDTraversal(Sinit,

∆init, ε), where the context ∆init = {e}.
We use the low-level virtual machine (LLVM) inter-

mediate representation (IR), Bitcode [30], as our IR for
analysis. Bitcode is a typed, static single assignment
(SSA) IR, and well-suited for low-level languages like
C. The analysis clients interact with our soundy driver
traversal (SDT) analysis by implementing visitors, or
transfer functions, for specific LLVM IR instructions,
which enables them to both use and update the informa-
tion in the global state of the analysis. The instructions
that we define transfer functions for in the IR are:

1. Alloca (v = alloca typename) allocates a stack
variable with the size of the type typename and as-
signs the location to v (e.g., %1 = alloca i32).
SDT uses the instruction location to reference the
newly allocated instruction. Since SDT is context-
sensitive, the instruction location is a combination
of the current context and the instruction offset
within the function bitcode.

2. BinOp (v = op op1, op2) applies op to op1 and
op2 and assigns the result to v (e.g., %1 = add

val, 4). We also consider, the flow-merging in-
struction in SSA, usually called phi [21], to be the
same as a binary operation. Since SDT is not path-
sensitive, this does not affect the soundness.

3. Load (v = load typename op) is the standard
load instruction, which loads the contents of type
typename from the address represented by the
operand op into the variable v (e.g., %tmp1 = load

i32* %tmp).

4. Store (store typename v, op) is the standard
store instruction, which stores the contents of
type typename represented by the value v into
the address represented by op (e.g., store i8

%frombool1, %y.addr).

5. GetElementPtr (GEP) is the instruction used by the
IR to represent structure and array-based accesses
and has fairly complex semantics [53]. A simpli-
fied way to represent this is v = getelementptr

typename ob, off, which will get the ad-
dress of the field at index off from the ob-
ject ob of type typename, and store the refer-
enced value in v (e.g., %val = getelementptr

%struct.point %my point, 0).

Both our points-to and taint analysis implement trans-
fer functions based on these five instructions.

1012 26th USENIX Security Symposium USENIX Association

Algorithm 2: Points-to analysis transfer functions
function updatePtoAlloca (φc,τc,δ , I,v, locx)

mappt ← φc(δ)
locx← (x, /0, /0)
mappt(v)← (0, locx)

function updatePtoBinOp (φc,τc,δ , I,v,op1,op2)
mappt ← φc(δ)
pto1← mappt(op1)
pto2← mappt(op2)
set1←{(0,ob) | ∀(,ob) ∈ pto1}
set2←{(0,ob) | ∀(,ob) ∈ pto2}
mappt(v)← mappt(v)∪ set1∪ set2

function updatePtoLoad (φc,τc,δ , I,v,op)
mappt ← φc(δ)
ptoop← mappt(op)
set1←{ob(n) | ∀(n,ob) ∈ ptoop}
set2←{(0,ob) | ∀ob ∈ set1}
mappt(v)← mappt(v)∪ set2

function updatePtoStore (φc,τc,δ , I,v,op)
mappt ← φc(δ)
ptoop← mappt(op)
ptov← mappt(v)
setv←{ob | ∀(,ob) ∈ ptov}
∀(n,ob) ∈ ptoop do ob(n)← ob(n)∪ setv

function updatePtoGEP (φc,τc,δ , I,v,op,o f f)
mappt ← φc(δ)
ptoop← mappt(op)
setop←{ob(n) | ∀(n,ob) ∈ ptoop}
setv←{(o f f ,ob) | ∀ob ∈ setop}
mappt(v)← mappt(v)∪ setv

3.3 Points-to Analysis

The result of our points-to analysis is a list of values and
the set of all of the possible objects, and offsets, that
they can point to. Because of the way in which we con-
structed our alias location objects and transfer functions,
we are able to ensure that our points-to results are field-
sensitive. That is, we can distinguish between objects
that are pointed to by different fields of the same object
(e.g., different elements in a struct). Thus, as imple-
mented in SDT, we are able to obtain points-to results
that are flow-, context-, and field-sensitive.

Dynamic allocation. To handle dynamic allocation in
our points-to analysis, we maintain a list of kernel func-
tions that are used to allocate memory on the heap (e.g.,
kmalloc, kmem cache alloc, get free page). For

each call-site to these functions, we create a unique alias
object. Thus, for a given context of a function, each allo-
cation instruction has a single alias location, regard-
less of the number of times that it is visited. For example,
if there is a call to kmalloc in the basic block of a loop,
we will only create one alias location for it.

Algorithm 3: Taint analysis transfer functions
function updateTaintAlloca (φc,τc,δ , I,v, locx)

Nothing to do

function updateTaintBinOp (φc,τc,δ , I,v,op1,op2)
mapt ← τc(δ)
setv← mapt(op1)∪mapt(op2)
mapt(v)← setv||I

function updateTaintLoad (φc,τc,δ , I,v,op)
mappt ← φc(δ)
ptoop← mappt(op)
setop←{obt(n)||I | ∀(n,ob) ∈ ptoop}
mapt ← τc(δ)
mapt(v)← mapt(v)∪ setop

function updateTaintStore (φc,τc,δ , I,v,op)
mappt ← φc(δ)
ptoop← mappt(op)
mapt ← τc(δ)
trv← mapt(v)
∀(n,ob) ∈ ptoop do obt(n)← obt(n)∪ (trv||I)

function updateTaintGEP (φc,τc,δ , I,v,op,o f f)
UPDATETAINTBINOP(φc,τc,δ , I,v,op,o f f)

Internal kernel functions. Except for few kernel API
functions, whose effects can be easily handled (e.g.,
memcpy, strcpy, memset), we ignore all of the other
kernel APIs and core kernel functions. For exam-
ple, if the target of a call instruction is the function
i2c master send, which is part of the core kernel, we
do not follow the call. Contrary to the other works, which
check for valid usage of kernel API functions [12,64], we
assume that all usages of these functions are valid, as we
are only concerned with analyzing the more error-prone
driver code. Thus, we do no follow any function calls
into the core kernel code. While, we may miss some
points-to information because of this, again sacrificing
soundness, this assumption allows us to be more precise
within the driver and scale our analysis.

The update points-to transfer functions (updatePto*)
for the various instructions are as shown in Algorithm 2.

3.4 Taint Analysis
Taint analysis is a critical component of our system, as
almost all of our bug detectors use its results. Similar to
our points-to analysis, the results of our taint analysis are
flow-, context-, and field-sensitive.

The taint sources in our analysis are the arguments of
the entry functions. Section 5.3 explains the different
types of entry functions and their correspondingly tainted
arguments. We also consider special kernel functions
that copy data from user space (e.g., copy from user,
simple write to buffer) as taint sources and taint all
of the fields in the alias locations of the points-to map for

USENIX Association 26th USENIX Security Symposium 1013

Listing 2: A buffer overflow bug detected in Mediatek’s
Accdet driver by ITDUD where buf is assumed to be a
single character but the use of “%s” will continue read-
ing the buffer until a null-byte is found.
1 s t a t i c c h a r c a l l s t a t u s ;
2 . . .
3 s t a t i c s s i z e t
4 a c c d e t s t o r e c a l l s t a t e
5 (s t r u c t d e v i c e d r i v e r ∗d d r i ,
6 c o n s t c h a r ∗buf , s i z e t c o u n t)
7 {
8 / / ∗∗ Improper use o f t a i n t e d da ta ∗∗
9 / / b u f can c o n t a i n more than one char !

10 i n t r e t = s s c a n f (buf , ”%s ” , &c a l l s t a t u s) ;
11

12 / / The r e t u r n v a l u e i s checked , b u t i t ’ s t o o l a t e
13 i f (r e t != 1) {
14 ACCDET DEBUG(” a c c d e t : I n v a l i d v a l u e s\n ”) ;
15 r e t u r n -EINVAL ;
16 }
17

18 s w i t c h (c a l l s t a t u s) {
19 c a s e CALL IDLE :
20 . . .
21 }

the destination operands of these functions. Our taint
propagators are implemented as various transformation
functions (updateTaint* in Algorithm 3). Similar to
our points-to analysis, we do not propagate taint for any
core kernel function calls, aside from a few exceptions
(e.g., memcpy). The taint sinks in our analysis are depen-
dent on the vulnerability detectors, as every detector has
its own taint policy. These detectors will raise warnings
if any tainted data violates a specified policy (e.g., if a
tainted value is used as the length in a memcpy).

4 Vulnerability Detectors

This section describes the various vulnerability detectors
that were used in our analysis. These detectors are highly
configurable and are able to act on the results from both
our points-to and taint analysis. They are implemented
as plugins that are run continuously as the code is being
analyzed, and operate on the results from our analysis
clients (i.e., taint and points-to analysis). Our architec-
ture enables us to very quickly implement new analyses
to explore new classes of vulnerabilities. In fact, in the
process of analyzing our results for this paper, we were
able to create the Global Variable Race Detector (GVRD)
detector and deploy it in less than 30 minutes.

Almost all of the detectors use taint analysis results to
verify a vulnerable condition and produce a taint trace
with all of their emitted warnings. The warnings also
provide the line numbers associated with the trace for
ease of triaging. The various bug detectors used by
DR. CHECKER in our analysis are explained below:

Improper Tainted-Data Use Detector (ITDUD) checks
for tainted data that is used in risky functions (i.e.,
strc*, strt*, sscanf, kstrto, and simple strto

Listing 3: A zero-day vulnerability discovered by
DR. CHECKER in Mediatek’s mlog driver using our
TAD and TLBD analysis. First TAD identified an integer
overflow bug (len - MLOG STR LEN). TLBD then iden-
tified that this tainted length was being used as a bound
condition for the while loop where data is being copied
into kernel space.
1 # d e f i n e MLOG STR LEN 16
2 . . .
3 i n t mlog doread (c h a r u s e r ∗buf , s i z e t l e n)
4 {
5 u n s i g n e d i ;
6 i n t e r r o r = -EINVAL ;
7 c h a r m l o g s t r [MLOG STR LEN] ;
8 . . .
9 / / l e n i s u n s i g n e d

10 i f (! buf | | l e n < 0)
11 go to o u t ;
12 e r r o r = 0 ;
13 / / l e n n o t checked a g a i n s t MLOG STR LEN
14 i f (! l e n)
15 go to o u t ;
16 / / b u f o f l e n c o n f i r m e d t o be i n u s e r space
17 i f (! a c c e s s o k (VERIFY WRITE , buf , l e n)) {
18 e r r o r = -EFAULT ;
19 go to o u t ;
20 }
21 . . .
22 i = 0 ;
23 . . .
24 / / ∗∗ I n t e g e r u n d e r f l o w bug ∗∗
25 / / l e n - MLOG STR LEN (1 6) can be n e g a t i v e
26 / / and i s compared w i t h u n s i g n e d i
27 w h i l e (! e r r o r && (m l o g s t a r t != mlog end)
28 && i < l e n - MLOG STR LEN) {
29 i n t s i z e ;
30 . . .
31 s i z e = s n p r i n t f (m l o g s t r , MLOG STR LEN ,
32 s t r f m t l i s t [s t r f m t i d x ++] , v) ;
33 . . .
34 / / t h i s f u n c t i o n i s an u n s a f e copy
35 / / t h i s r e s u l t s i n w r i t i n g p a s t b u f
36 / / p o t e n t i a l l y i n t o k e r n e l a d d r e s s space
37 i f (c o p y t o u s e r (buf , m l o g s t r , s i z e))
38 e r r o r = -EFAULT ;
39 e l s e {
40 buf += s i z e ;
41 i += s i z e ;
42 }
43 }
44 }

family functions). An example of a previously un-
known buffer overflow, detected via ITDUD, is shown
in Listing 2.
Tainted Arithmetic Detector (TAD) checks for tainted
data that is used in operations that could cause an over-
flow or underflow (e.g., add, sub, or mul). An example
of a zero-day detected by TAD is shown in Listing 3.
Invalid Cast Detector (ICD) keeps tracks of allocation
sizes of objects and checks for any casts into an object of
a different size.
Tainted Loop Bound Detector (TLBD) checks for
tainted data that is used as a loop bound (i.e., a loop guard
in which at least one of the values is tainted). These
bugs could lead to a denial of service or even an arbi-
trary memory write. The example in Listing 3 shows this
in a real-world bug, which also triggered on TAD.

1014 26th USENIX Security Symposium USENIX Association

Listing 4: An information leak bug via padded fields de-
tected by our ULD in Mediatek’s FM driver where a
struct’s memory is not sanitized before being copied back
to user space leaking kernel stack data.
1 fm s32 f m g e t a u d i n f o (f m a u d i o i n f o t ∗ d a t a)
2 {
3

4 i f (fm low ops . b i . g e t a u d i n f o) {
5 r e t u r n fm low ops . b i . g e t a u d i n f o (d a t a) ;
6 } e l s e {
7 d a t a ->a u d p a t h = FM AUD ERR ;
8 d a t a -> i 2 s i n f o . mode = FM I2S MODE ERR ;
9 d a t a -> i 2 s i n f o . s t a t u s = FM I2S STATE ERR ;

10 d a t a -> i 2 s i n f o . r a t e = FM I2S SR ERR ;
11 r e t u r n 0 ;
12 }
13 }
14 . . .
15 c a s e FM IOCTL GET AUDIO INFO :
16 f m a u d i o i n f o t a u d d a t a ;
17 / / ∗∗ no memset o f a u d d a t a ∗∗
18 / / Not a l l f i e l d s o f a u d d a t a are i n i t i a l i z e d
19 r e t = f m g e t a u d i n f o (& a u d d a t a) ;
20 i f (r e t) {
21 WCN DBG(FM ERR |MAIN, ” f m g e t a u d i n f o e r r \n ”) ;
22 }
23 / / Copying t h e s t r u c t r e s u l t s i n da ta - l e a k a g e
24 / / f rom padding and u n i n i t i a l i z e d f i e l d s
25 i f (c o p y t o u s e r ((vo id ∗) arg , &a u d d a t a ,
26 s i z e o f (f m a u d i o i n f o t))) {
27 WCN DBG(FM ERR |MAIN, ” c o p y t o u s e r e r r o r \n ”) ;
28 r e t = -EFAULT ;
29 go to o u t ;
30 }
31 . . .

Tainted Pointer Dereference Detector (TPDD) detects
pointers that are tainted and directly dereferenced. This
bug arises when a user-specified index into a kernel struc-
ture is used without checking.

Tainted Size Detector (TSD) checks for tainted data that
is used as a size argument in any of the copy to or
copy from functions. These types of bugs can result
in information leaks or buffer overflows since the tainted
size is used to control the number of copied bytes.

Uninit Leak Detector (ULD) keeps tracks of which
objects are initialized, and will raise a warning if
any src pointer for a userspace copy function (e.g.,
copy to user) can point to any uninitialized objects. It
also detects structures with padding [40] and will raise
a warning if memset or kzalloc has not been called on
the corresponding objects, as this can lead to an infor-
mation leak. An example of a previously unknown bug
detected by this detector is as shown in Listing 4

Global Variable Race Detector (GVRD) checks for
global variables that are accessed without a mutex. Since
the kernel is reentrant, accessing globals without syn-
cronization can result in race conditions that could lead
to time of check to time of use (TOCTOU) bugs.

5 Implementation

DR. CHECKER is built on top of LLVM 3.8 [30]. LLVM
was chosen because of its flexibility in writing analy-
ses, applicability to different architectures, and excellent
community support. We used integer range analysis as
implemented by Rodrigues et al. [42]. This analysis is
used by our vulnerability detectors to verify certain prop-
erties (e.g., checking for an invalid cast).

We implemented DR. CHECKER as an LLVM mod-
ule pass, which consumes: a bitcode file, an entry

function name, and an entry function type. It
then runs our SDT analysis, employing the various anal-
ysis engines and vulnerability detectors. Depending on
the entry function type, certain arguments to the
entry functions are tainted before invoking the SDT (See
Section 5.3).

Because our analysis operates on LLVM bitcode, we
must first identify and build all of the driver’s bitcode
files for a given kernel (Section 5.1). Similarly, we
must identify all of the entry points in these drivers
(Section 5.2) in order to pass them to our SDT analysis.

5.1 Identifying Vendor Drivers

To analyze the drivers independently, we must first dif-
ferentiate driver source code files from that of the core
kernel code. Unfortunately, there is no standard location
in the various kernel source trees for driver code. Making
the problem even harder, a number of the driver source
files omit vendor copyright information, and some ven-
dors even modify the existing sources directly to imple-
ment their own functionality. Thus, we employ a com-
bination of techniques to identify the locations of the
vendor drivers in the source tree. First, we perform a
diff against the mainline sources, and compare those
files with a referenced vendor’s configuration options
to search for file names containing the vendor’s name.
Luckily, each vendor has a code-name that is used in all
of their options and most of their files (e.g., Qualcomm
configuration options contain the string MSM, Mediatek is
MTK, and Huawei is either HISI or HUAWEI), which helps
us identify the various vendor options and file names. We
do this for all of the vendors, and save the locations of the
drivers relative to the source tree.

Once the driver files are identified, we compile them
using clang [51] into both Advanced RISC Machine
(ARM) 32 bit and 64 bit bitcode files. This necessi-
tated a few non-trivial modifications to clang, as there
are numerous GNU C Compiler (GCC) compiler op-
tions used by the Linux kernel that are not supported
by clang (e.g., the -fno-var-tracking-assignments
and -Wno-unused-but-set-variable options used
by various Android vendors). We also added additional

USENIX Association 26th USENIX Security Symposium 1015

compiler options to clang (e.g., -target) to aid our anal-
ysis. In fact, building the Linux kernel using LLVM is an
ongoing project [52], suggesting that considerable effort
is still needed.

Finally, for each driver, we link all of the dependent
vendor files into a single bitcode file using llvm-link,
resulting in a self-contained bitcode file for each driver.

5.2 Driver Entry Points

Linux kernel drivers have various ways to interact with
the userspace programs, categorized by 3 operations:
file [20], attribute [35], and socket [37].

File operations are the most common way of interact-
ing with userspace. In this case, the driver exposes
a file under a known directory (e.g., /dev, /sys, or
/proc) that is used for communication. During ini-
tialization, the driver specifies the functions to be in-
voked for various operations by populating function
pointers in a structure, which will be used to han-
dle specific operations (e.g., read, write, or ioctl).
The structure used for initialization can be different
for each driver type. In fact, there are at least 86
different types of structures in Android kernels (e.g.,
struct snd pcm ops, struct file operations, or
struct watchdog ops [3]). Even worse, the entry
functions can be at different offset in each of these
structures. For example, the ioctl function pointer is
at field 2 in struct snd pcm ops, and at field 8 in
struct file operations. Even for the same struc-
ture, different kernels may implement the fields differ-
ently, which results in the location of the entry function
being different for each kernel. For example, struct
file operations on Mediatek’s mt8163 kernel has its
ioctl function at field 11, whereas on Huawei, it ap-
pears at field 9 in the structure.

To handle these eccentricities in an automated way,
we used c2xml [11] to parse the header files of each
kernel and find the offsets for possible entry function
fields (e.g., read or write) in these structures. Later,
given a bitcode file for a driver, we locate the different
file operation structures being initialized, and identify the
functions used to initialize the different entry functions.

Listing 5: An initialization of a file operations structure
in the mlog driver of Mediatek
1 s t a t i c c o n s t s t r u c t f i l e o p e r a t i o n s
2 p r o c m l o g o p e r a t i o n s = {
3 . owner = NULL,
4 . l l s e e k = NULL,
5 . r e a d = mlog read ,
6 . p o l l = m l o g p o l l ,
7 . open = mlog open ,
8 . r e l e a s e = m l o g r e l e a s e ,
9 . l l s e e k = g e n e r i c f i l e l l s e e k ,

10 } ;

Table 1: Tainted arguments for each driver entry function
type wether they are directly and indirectly tainted.

Entry Type Argument(s) Taint Type
Read (File) char *buf, size t len Direct
Write (File) char *buf, size t len Direct
Ioctl (File) long arg Direct

DevStore (Attribute) const char *buf Indirect
NetDevIoctl (Socket) struct *ifreq Indirect

V4Ioctl struct v4l2 format *f Indirect

These serve as our entry points for the corresponding op-
erations. For example, given the initialization as shown
in Listing 5, and the knowledge that read entry func-
tion is at offset 2 (zero indexed), we mark the function
mlog read as a read entry function.

Attribute operations are operations usually exposed by
a driver to read or write certain attributes of that driver.
The maximum size of data read or written is limited to a
single page in memory.

Sockets operations are exposed by drivers as a socket
file, typically a UNIX socket, which is used to commu-
nicate with userspace via various socket operations (e.g.,
send, recv, or ioctl).

There are also other drivers in which the kernel
implements a main wrapper function, which performs
initial verification of the user parameters and par-
tially sanitizes them before calling the corresponding
driver function(s). An example of this can be seen
in the V4L2 Framework [66], which is used for video
drivers. For our implementation we consider only
struct v4l2 ioctl ops, which can be invoked by
userspace via the wrapper function video ioctl2.

5.3 Tainting Entry Point Arguments
An entry point argument can contain either directly
tainted data (i.e., the argument is passed directly by
userspace and never checked) or indirectly tainted data
(i.e., the argument points to a kernel location, which con-
tains the tainted data). All of the tainted entry point
functions can be categorized in six categories, which are
shown in Table 1, along with the type of taint data that
their arguments represent.

An explicit example of directly tainted data is shown
in Listing 6. In this snippet, tc client ioctl is
an ioctl entry function, so argument 2 (arg) is di-
rectly tainted. Thus, the statement char c=(char*)arg

would be dereferencing tainted data and is flagged
as a warning. Alternatively, argument 2 (ctrl) in
iris s ext ctrls is a V4Ioctl and is indirectly
tainted. As such, the dereference (data = (ctrl-

>controls[0]).string) is safe, but it would taint
data.

1016 26th USENIX Security Symposium USENIX Association

Listing 6: Example of tainting different arguments
where tc client ioctl has a directly tainted argument
and iris s ext ctrls’s argument is indirectly tainted.
1 s t a t i c l ong t c c l i e n t i o c t l (s t r u c t f i l e ∗ f i l e ,
2 u n s i g n e d cmd , u n s i g n e d long a r g) {
3 . . .
4 c h a r c =(c h a r ∗) a r g
5 . . .
6 }
7 s t a t i c i n t i r i s s e x t c t r l s (s t r u c t f i l e ∗ f i l e ,
8 vo id ∗p r i v , s t r u c t v 4 l 2 e x t c o n t r o l s ∗ c t r l) {
9 . . .

10 c h a r ∗ d a t a = (c t r l ->c o n t r o l s [0]) . s t r i n g ;
11 . . .
12 c h a r c u r r c h = d a t a [0] ;
13 }

6 Limitations

Because of the DR. CHECKER’s soundy nature, it cannot
find all the vulnerabilities in all drivers. Specifically, it
will miss following types of vulnerabilities:

• State dependent bugs: Since DR. CHECKER is a
stateless system, it treats each entry point indepen-
dently (i.e., taint does not propagate between mul-
tiple entry points). As a result, we will miss any
bugs that occur because of the interaction between
multiple entry points (e.g., CVE-2016-2068 [4]).

• Improper API usage: DR. CHECKER assumes that
all the kernel API functions are safe and correctly
used (Assumption 1 in Section 3). Bugs that oc-
cur because of improper kernel API usage will be
missed by DR. CHECKER. However, other tools
(e.g., APISan [64]) have been developed for find-
ing these specific types of bugs and could be used
to complement DR. CHECKER.

• Non-input-validation bugs: DR. CHECKER specif-
ically targets input validation vulnerabilities. As
such, non-input validation vulnerabilities (e..g, side
channels or access control bugs) cannot be detected.

7 Evaluation

To evaluate the efficacy of DR. CHECKER, we performed
a large-scale analysis of the following nine popular mo-
bile device kernels and their associated drivers (437 in
total). The kernel drivers in these devices range from
very small components (31 LOC), to much more com-
plex pieces of code (240,000 LOC), with an average of
7,000 LOC per driver. In total, these drivers contained
over 3.1 million lines of code. However, many of these
kernels re-use the same code, which could result in ana-
lyzing the same entry point twice, and inflate our results.
Thus, we have grouped the various kernels based on their
underlying chipset, and only report our results based on
these groupings:

Table 2: Summary of warnings produced by popular bug-
finding tools on the various kernels that we analyzed.

Number of Warnings
Kernel cppcheck flawfinder RATS Sparse
Qualcomm 18 4,365 693 5,202
Samsung 22 8,173 2,244 1,726
Hauwei 34 18,132 2,301 11,230
Mediatek 168 14,230 3,730 13,771

242 44,900 8,968 31,929

Mediatek:
• Amazon Echo (5.5.0.3)
• Amazon Fire HD8 (6th Generation, 5.3.2.1)
• HTC One Hima (3.10.61-g5f0fe7e)
• Sony Xperia XA (33.2.A.3.123)

Qualcomm
• HTC Desire A56 (a56uhl-3.4.0)
• LG K8 ACG (AS375)
• ASUS Zenfone 2 Laser (ZE550KL / MR5-

21.40.1220.1794)
Huawei
• Huawei Venus P9 Lite (2016-03-29)

Samsung
• Samsung Galaxy S7 Edge (SM-G935F NN)

To ensure that we had a baseline comparison for
DR. CHECKER, we also analyzed these drivers us-
ing 4 popular open-source, and stable, static analysis
tools (flawfinder [57], RATs [45], cppcheck [34], and
Sparse [54]). We briefly describe our interactions with
each below, and a summary of the number of warnings
raised by each is shown in Table 2.

Flawfinder & RATs Both Flawfinder and RATs are
pattern-matching-based tool used to identify potentially
dangerous portions of C code. In our experience, the
installation and usage of each was quite easy; they
both installed without any configuration and used a sim-
ple command-line interface. However, the criteria that
they used for their warnings tended to be very simplis-
tic, missed complex bugs, and where overly general,
which resulted in an extremely high number of warn-
ings (64,823 from Flawfinder and 13,117 from RATs).
For example, Flawfinder flagged a line of code with the
warning, High: fixed size local buffer. However, after
manual investigation it was clear this code was unreach-
able, as it was inside of an #if 0 definition.

We also found numerous cases where the string-
matching algorithm was overly general. For exam-
ple, Flawfinder raised a critical warning ([4] (shell)
system), incorrectly reporting that system was be-
ing invoked for the following define: #define

system cluster(system, clusterid).

USENIX Association 26th USENIX Security Symposium 1017

Table 3: Comparison of the features provided by popular bug-finding tools and DR. CHECKER, where
√

indicates
availability of the feature.

Feature cppcheck flawfinder RATS Sparse DR. CHECKER
Extensible

√
- - -

√

Inter-procedural - - - -
√

Handles pointers - - - -
√

Kernel Specific - - -
√ √

No Manual Annotations
√ √ √

-
√

Requires compilable sources
√

- -
√ √

Sound - - - - -
Traceable Warnings - - -

√ √

Ultimately, the tools seemed reasonable for basic code
review passes, and perhaps for less-security minded pro-
grams, as they do offer informational warning messages:

Flawfinder: Statically-sized arrays can be im-
properly restricted, leading to potential overflows
or other issues (CWE-119:CWE-120). Perform
bounds checking, use functions that limit length, or
ensure that the size is larger than the maximum pos-
sible length.

RATs: Check buffer boundaries if calling this func-
tion in a loop and make sure you are not in danger
of writing past the allocated space

Sparse Sparse was developed by Linus Torvalds and
is specifically targeted to analyze kernel code. It is
implemented as a compiler front end (enabled by the
flag C=2 during compilation) that raises warnings about
known problems, and even allows developers to pro-
vide static type annotations (e.g., user and kernel).
The tool was also relatively easily to use. Although,
Sparse is good at finding annotation mis-matches like
unsafe user pointer dereferences [16]. Its main draw-
back was the sheer number of warnings (64,823 in to-
tal) it generated, where most of the warnings gener-
ated were regarding non-compliance to good kernel code
practices. For example, warnings like, “warning: Us-
ing plain integer as NULL pointer” and “warning: sym-
bol ’htc smem ram addr’ was not declared. Should it be
static?,” were extremely common.

cppcheck Cppcheck was the most complicated to use
of the tools that we evaluated, as it required manual iden-
tification of all of the includes, configurations, etc. in the
source code. However, this knowledge of the source code
structure did result in much more concise results. While
the project is open-source, their analysis techniques are
not well-documented. Nevertheless, it is clear that the
tool can handle more complex interactions (e.g., macros,
globals, and loops) than the other three. For example, in
one of the raised warnings it reported an out-of-bounds
index in an array lookup. Unfortunately, after manual
investigation there was a guard condition protecting the

array access, but this was still a much more valuable
warning that those returned by other tools. It was also
able to identify an interesting use of snprintf on over-
lapped objects, which exhibits undefined behavior, and
appeared generally useful. It also has a configurable en-
gine, which allows users to specify additional types of
vulnerability patterns to identify. Despite this function-
ality, it still failed to detect any of the complex bugs that
DR. CHECKER was able to help us discover.

To summarize our experience, we provide a side-
by-side feature comparison of the evaluated tools and
DR. CHECKER in Table 3. Note that cppcheck and
DR. CHECKER where the only two with an extensible
framework that can be used to add vulnerability detec-
tors. Similarly, every tool aside from Sparse, which
needs manual annotations, was more-or-less completely
automated. As previously mentioned, Sparse’s annota-
tions are used to find unsafe user pointer dereferences,
and while these annotations are used rigorously in the
mainline kernel code, they are not always used in the
vendor drivers. Moreover, typecasting is frequently used
in Linux kernel making Sparse less effective. Pattern-
based tools like flawfinder and RATS do not require com-
pilable source code, which results in spurious warnings
because of pre-processor directives making them unus-
able. Of the evaluated features, traceability of the warn-
ings is potentially the most important for kernel bug-
finding tools [26], as these warnings will ultimately be
analyzed by a human. We consider a warning to be trace-
able if it includes all of the information required to un-
derstand how a user input can result in the warning. In
DR. CHECKER, we use the debug information embedded
in the LLVM bitcode to provide traceable warnings. An
example of a warning produced by DR. CHECKER is as
shown in Listing 7.

7.1 DR. CHECKER

The summarized results of all of the warnings that were
reported by DR. CHECKER are presented in Table 4. In
this table, we consider a warning as correct if the report
and trace were in fact true (e.g., a tainted variable was be-

1018 26th USENIX Security Symposium USENIX Association

Table 4: Summary of the bugs identified by DR. CHECKER in various mobile kernel drivers. We list the total number
of warnings raised, number correct warnings, and number of bugs identified as a result.

Warnings per Kernel (Count / Confirmed / Bug)
Detector Huawei Qualcomm Mediatek Samsung Total
TaintedSizeDetector 62 / 62 / 5 33 / 33 / 2 155 / 153 / 6 20 / 20 / 1 270 / 268 / 14
TaintedPointerDereferenceChecker 552 / 155 / 12 264 / 264 / 3 465 / 459 / 6 479 / 423 / 4 1760 / 1301 / 25
TaintedLoopBoundDetector 75 / 56 / 4 52 / 52 / 0 73 / 73 / 1 78 / 78 / 0 278 / 259 / 5
GlobalVariableRaceDetector 324 / 184 / 38 188 / 108 / 8 548 / 420 / 5 100 / 62 / 12 1160 / 774 / 63
ImproperTaintedDataUseDetector 81 / 74 / 5 92 / 91 / 3 243 / 241 / 9 135 / 134 / 4 551 / 540 / 21
IntegerOverflowDetector 250 / 177 / 6 196 / 196 / 2 247 / 247 / 6 99 / 87 / 2 792 / 707 / 16
KernelUninitMemoryLeakDetector 9 / 7 / 5 1 / 1 / 0 8 / 5 / 5 6 / 2 / 1 24 / 15 / 11
InvalidCastDetector 96 / 13 / 2 75 / 74 / 1 9 / 9 / 0 56 / 13 / 0 236 / 109 / 3

1,449 / 728 / 78 901 / 819 / 19 1,748 / 1,607 / 44 973 / 819 / 24 5,071 / 3,973 / 158

ing used by a dangerous function). All of these warnings
were manually verified by the authors, and those that are
marked as a bug were confirmed to be critical zero-day
bugs, which we are currently in the process of disclosing
to the appropriate vendors. In fact, 7 of the 158 identified
zero-days have already been issued Common Vulnerabil-
ities and Exposures (CVE) identifiers [6–10]. Of these,
Sparse correctly identified 1, flawfinder correctly identi-
fied 3, RATs identified 1 of the same ones as flawfinder,
and cppcheck failed to identify any of them. These bugs
ranged from simple data leakages to arbitrary code ex-
ecution within the kernel. We find these results very
promising, as 3,973 out of the 5,071 were confirmed,
giving us a precision of 78%, which is easily within the
acceptable 30% range [14].

While the overall detection rate of DR. CHECKER
is quite good (e.g., KernelUninitMemoryLeakDetector
raised 24 warnings, which resulted in 11 zero-day bugs),
there a few notable lessons learned. First, because our
vulnerability detectors are stateless, they raise a warning
for every occurrence of the vulnerable condition, which
results in a lot of correlated warnings. For example, the
code i = tainted+2; j = i+1; will raise two Inte-
gerOverflowDetector warnings, once for each vulnera-
ble condition. This was the main contributor to the huge
gap between our confirmed warnings and the actual bugs
as each bug was the result of multiple warnings. The
over-reporting problem was amplified by our context-
sensitive analysis. For example, if a function with a vul-
nerable condition is called multiple times from different
contexts, DR. CHECKER will raise one warning for each
context.

GlobalVariableRaceDetector suffered from numerous
false positives because of granularity of the LLVM in-
structions. As a result, the detector would raise a
warning for any access to a global variable outside
of a critical section. However, there are cases where
the mutex object is stored in a structure field (e.g.,
mutex lock(&global->obj)). This results in a false
positive because our detector will raise a warning on the

access to the global structure, despite the fact that it is
completely safe, because the field inside of it is actually
a mutex.

TaintedPointerDerefenceDetectors similarly struggled
with the precision of its warnings. For example, on
Huawei drivers (row 2, column 1), it raised 552 warn-
ings, yet only 155 were true positives. This was due
to the over-approximation of our points-to analysis. In
fact, 327 of these are attributed to only two entry points
rpmsg hisi write and hifi misc ioctl, where our
analysis over-approximated a single field that was then
repeatedly used in the function. A similar case hap-
pened for entry point sc v4l2 s crop in Samsung,
which resulted in 21 false warnings. The same over-
approximation of points-to affected InvalidCastDetector,
with 2 entry points (picolcd debug flash read and
picolcd debug flash write) resulting in 66 (80%)
false positives in Huawei and a single entry point
(touchkey fw update.419) accounting for a major-
ity of the false positives in Samsung. IntegerOver-
flowDetector also suffered from over-approximation at
times, with 30 false warnings in a single entry point
hifi misc ioctl for Hauwei.

One notable takeaway from our evaluation was that
while we expected to find numerous integer overflow
bugs, we found them to be far more prevalent in 32 bit ar-
chitectures than 64 bites, which is contrary to previously
held beliefs [58]. Additionally, DR. CHECKER was able
to correctly identify the critical class of Boomerang [33]
bugs that were recently discovered.

7.2 Soundy Assumptions

DR. CHECKER in total analyzed 1207 entry points and
90% of the entry points took less than 100 seconds to
complete. DR. CHECKER’s practicality and scalability
are made possible by our soundy assumptions. Specifi-
cally, not analyzing core kernel functions and not wait-
ing for loops to converge to a fixed-point. In this sec-
tion, we evaluate how these assumptions affected both

USENIX Association 26th USENIX Security Symposium 1019

Table 5: Runtime comparison of 100 randomly selected
entry points with our analysis implemented a “sound”
analysis (Sound), a soundy analysis, without analyz-
ing kernel functions (No API), and a soundy analy-
sis without kernel functions or fixed-point loop analysis
(DR. CHECKER).

Runtime (seconds)
Analysis Avg. Min. Max. St. Dev.
Sound∗ 175.823 0.012 2261.468 527.244
No API 110.409 0.016 2996.036 455.325

DR. CHECKER 35.320 0.008 978.300 146.238

∗ Only 18/100 sound analyses completed successfully.

our precision (i.e., practicality) and runtime (i.e., scala-
bility). This analysis was done by randomly selecting 25
entry points from each of our codebases (i.e., Huawei,
Qualcomm, Mediatek, and Samsung), resulting 100 ran-
domly selected driver entry points. We then removed our
two soundy assumptions, resulting in a “sound” analysis,
and ran our analysis again.

Kernel Functions Our assumption that all kernel func-
tions are bug free and correctly implemented is critical
for the efficacy of DR. CHECKER for two reasons. First,
the state explosion that results from analyzing all of the
core kernel code makes much of our analysis compu-
tationally infeasible. Second, as previously mentioned,
compiling the Linux kernel for ARM with LLVM is still
an ongoing project, and thus would require a significant
engineering effort [52]. In fact, in our evaluation we
compiled the 100 randomly chosen entry with best-effort
compilation using LLVM, where we created a consol-
idated bitcode file for each entry point with all the re-
quired kernel API functions, caveat those that LLVM
failed to compile. We ran our “sound” analysis with
these compiled API functions and evaluated all loops un-
til both our points-to and taint analysis reached a fixed
point, and increased our timeout window to four hours
per entry point. Even with the potentially missing ker-
nel API function definitions, only 18 of these 100 entry
points finished within the 4 hours. The first row (Sound)
in Table 5 shows the distribution of time over these 18
entry points. Moreover, these 18 entry points produced
63 warnings and took a total of 52 minutes to evaluate,
compared to 9 warnings and less than 1 minute of evalu-
ation time using our soundy analysis.

Fixed-point Loop Analysis Since we were unable to
truly evaluate a sound analysis, we also evaluated our
second assumption (i.e., using a reach-def loop analysis
instead of a fixed-point analysis) in isolation to exam-
ine its impact on DR. CHECKER. In this experiment,

we ignored the kernel API functions (i.e., assume cor-
rect implementation), but evaluated all loops until they
reached a fixed point on the same 100 entry points. In
this case, all of the entry points were successfully ana-
lyzed within our four hour timeout window. The second
row (No API) in Table 5 shows the distribution of eval-
uation times across these entry points. Note that this ap-
proach takes 3× more time than the DR. CHECKER ap-
proach to analyze an entry point on average. Similarly,
our soundy analysis returned significantly fewer warn-
ings, 210 compared to the 474 warnings that were raised
by this approach.

A summary of the execution times (i.e., sound, fixed-
point loops, and DR. CHECKER) can be found in
Table 5, which shows that ignoring kernel API functions
is the main contributor of the DR. CHECKER’s scalabil-
ity. This is not surprising because almost all the ker-
nel drivers themselves are written as kernel modules [2],
which are small (7.3K lines of code on average in the
analyzed kernels) and self-contained.

8 Discussion

Although DR. CHECKER is designed for Linux kernel
drivers, the underlying techniques are generic enough to
be applied to other code bases. Specifically, as shown
in Section 7.1, ignoring external API functions (i.e., ker-
nel functions) is the major contributor to the feasibility of
DR. CHECKER on the kernel drivers. DR. CHECKER in
principle can be applied to any code base, which is mod-
ular and has well-defined entry points (e.g., ImageMag-
ick [1]). While our techniques are portable, some en-
gineering effort is likely needed to change the detectors
and setup the LLVM build environment. Specifically, to
apply DR. CHECKER, one needs to:

1. Identify the source files of the module, and compile
them in to a consolidated bitcode file.

2. Identify the function names, which will serve as en-
try points.

3. Identify how the arguments to these functions are
tainted.

We provided more in-depth documentation of how this
would be done in practice on our website.

9 Related Work

Zakharov et al. [65] discuss many of the existing tools
and propose a pluggable interface for future static-
analysis techniques, many of which are employed in
DR. CHECKER. A few different works looked into the
API-misuse problem in kernel drivers. APISan [64] is

1020 26th USENIX Security Symposium USENIX Association

Listing 7: Example of output from DR. CHECKER

At C a l l i n g C o n t e x t :
%c a l l 2 5 = c a l l i 6 4 @ged d i spa t ch (% s t r u c t . GED BRIDGE PACKAGE∗ %sBridgePackageKM) , ! dbg !27823 ,
s r c l i n e :187 d r i v e r s / misc / m e d i a t e k / gpu / ged / s r c / ged main . c

Found : 1 warn ing .

Warning : 1
P o t e n t i a l v u l n e r a b i l i t y d e t e c t e d by : I n t e g e r O v e r f l o w D e t e c t o r :

P o t e n t i a l ove r f low , u s i n g t a i n t e d v a l u e i n a b i n a r y o p e r a t i o n a t :
%add = add i 3 2 %2, %3, ! dbg !27792 ,

s r c l i n e :101 d r i v e r s / misc / m e d i a t e k / gpu / ged / s r c / ged main . c , Func : g e d d i s p a t c h
T a i n t Trace :

%c a l l 2 = c a l l i 6 4 @ c o p y f r o m u s e r (i 8∗ %pvTo , i 8∗ %pvFrom , i 6 4 %u l B y t e s) , ! dbg !27796 ,
s r c l i n e : 4 3 d r i v e r s / misc / m e d i a t e k / gpu / ged / s r c / g e d b a s e . c , Func : g e d c o p y f r o m u s e r

%2 = l o a d i32 , i 3 2∗ %i 3 2 I n B u f f e r S i z e 3 , a l i g n 8 , ! dbg !27790 ,
s r c l i n e :101 d r i v e r s / misc / m e d i a t e k / gpu / ged / s r c / ged main . c , Func : g e d d i s p a t c h

a symbolic-execution-based approach, and Static Driver
Verifier (SDV) [12] similarly identified API-misuse us-
ing static data-flow analysis. However, these techniques
are contrary to DR. CHECKER, as we explicitly assume
that the kernel APIs are implemented properly.

SymDrive [43] uses symbolic execution to verify
properties of kernel drivers. However, it requires de-
velopers to annotate their code and relies heavily on
the bug finder to implement proper checkers. Johnson
et al. [28] proposed a sound CQUAL-based [24] tool,
which is context-sensitive, field-sensitive, and precise
taint-based analysis; however, this tool also requires user
annotations of the source code, which DR. CHECKER
does not.

KINT [56] uses taint analysis to find integer errors in
the kernel. While KINT is sound, their techniques are
specialized to integer errors, whereas DR. CHECKER at-
tempts to find general input validation errors by compro-
mising soundness.

Linux Driver Verification (LDV) [36] is a tool based
on BLAST [27] that offers precise pointer analysis; how-
ever, it is still a model-checker-based tool, whereas we
built our analysis on well-known static analysis tech-
niques. Yamaguchi et al. have done a significant amount
of work in this area, based on Joern [59–62], where they
use static analysis to parse source code into novel data
structures and find known vulnerable signatures. How-
ever, their tool is similar to a pattern-matching model-
checking type approach, whereas we are performing gen-
eral taint and points-to analysis with pluggable vulner-
ability detectors. VCCFinder [41] also used a simi-
lar pattern-matching approach, but automatically con-
structed their signatures by training on previously known
vulnerabilities to create models that could be used to de-
tect future bugs.

MECA [63] is a static-analysis framework, capable of
taint analysis, that will report violations based on user
annotations in the source code, and similarly aims to re-
duce false positives by sacrificing soundness. ESP [22] is

also capable of fully path-sensitive partial analysis using
“property simulation,” wherein they combine data-flow
analysis with a property graph. However, this approach
is not as robust as our more general approach.

Boyd-Wickizer et al. [15] proposed a potential defense
against driver vulnerabilities that leverages x86 hardware
features; however, these are unlikely to be easily ported
to ARM-based mobile devices. Nooks [49] is a similar
defense; however, this too has been neglected in both the
mainline and mobile deployments thus far, due to similar
hardware constraints.

10 Conclusion

We have presented DR. CHECKER, a fully-automated
static analysis bug-finding tool for Linux kernels that
is capable of general context-, path-, and flow-sensitive
points-to and taint analysis. DR. CHECKER is based
on well-known static analysis techniques and employs
a soundy analysis, which enables it to return precise
results, without completely sacrificing soundness. We
have implemented DR. CHECKER in a modular way,
which enables both analyses and bug detectors to be eas-
ily adapted for real-world bug finding. In fact, during
the writing of this paper, we identified a new class of
bugs and were able to quickly augment DR. CHECKER
to identify them, which resulted in the discovery 63
zero-day bugs. In total, DR. CHECKER discovered 158
previously undiscovered zero-day bugs in nine popular
mobile Linux kernels. All of the details and disclo-
sures for these bugs can be found online at github.
com/ucsb-seclab/dr_checker. While these results
are promising, DR. CHECKER still suffers from over-
approximation as a result of being soundy, and we have
identified areas for future work. Nevertheless, we feel
that DR. CHECKER exhibits the importance of analyzing
Linux kernel drivers and provides a useful framework for
adequately handling this complex code.

USENIX Association 26th USENIX Security Symposium 1021

Acknowledgements

We would like to thank the anonymous reviewers and
our shepherd Stelios Sidiroglou-Douskos for their valu-
able comments and input to improve our paper. This
material is based on research sponsored by the Office of
Naval Research under grant number N00014-15-1-2948
and by DARPA under agreement number FA8750-15-
2-0084. The U.S. Government is authorized to repro-
duce and distribute reprints for Governmental purposes
notwithstanding any copyright notation thereon.

This work is also sponsored by a gift from Google’s
Anti-Abuse group.

The views and conclusions contained herein are those
of the authors and should not be interpreted as neces-
sarily representing the official policies or endorsements,
either expressed or implied, of DARPA or the U.S. Gov-
ernment.

References
[1] Imagemagick: Convert different image formats. https://

github.com/ImageMagick/ImageMagick. Accessed: 2017-
05-26.

[2] Kernel modules. http://tldp.org/LDP/lkmpg/2.6/html/

x427.html. Accessed: 2017-05-26.

[3] The linux watchdog timer driver core kernel api. https:

//www.kernel.org/doc/Documentation/watchdog/

watchdog-kernel-api.txt. Accessed: 2017-02-14.

[4] CVE-2016-2068. Available from MITRE, CVE-ID CVE-2016-
2068., 2016.

[5] CVE-2016-5195. Available from MITRE, CVE-ID CVE-2016-
5195., May 2016.

[6] CVE-2016-8433. Available from MITRE, CVE-ID CVE-2016-
8433., May 2016.

[7] CVE-2016-8448. Available from MITRE, CVE-ID CVE-2016-
8448., May 2016.

[8] CVE-2016-8470. Available from MITRE, CVE-ID CVE-2016-
8470., May 2016.

[9] CVE-2016-8471. Available from MITRE, CVE-ID CVE-2016-
8471., May 2016.

[10] CVE-2016-8472. Available from MITRE, CVE-ID CVE-2016-
8472., May 2016.

[11] AUBERT, J., AND TUSET, D. c2xml. http://c2xml.

sourceforge.net/.

[12] BALL, T., BOUNIMOVA, E., COOK, B., LEVIN, V., LICHTEN-
BERG, J., MCGARVEY, C., ONDRUSEK, B., RAJAMANI, S. K.,
AND USTUNER, A. Thorough static analysis of device drivers.
ACM SIGOPS Operating Systems Review 40, 4 (2006), 73–85.

[13] BALL, T., AND RAJAMANI, S. K. The slam project: Debug-
ging system software via static analysis. In Proceedings of the
2002 ACM Symposium on Principles of Programming Languages
(New York, NY, USA, 2002), POPL ’02, ACM, pp. 1–3.

[14] BESSEY, A., BLOCK, K., CHELF, B., CHOU, A., FULTON, B.,
HALLEM, S., HENRI-GROS, C., KAMSKY, A., MCPEAK, S.,
AND ENGLER, D. A few billion lines of code later: Using static
analysis to find bugs in the real world. Commun. ACM 53, 2 (Feb.
2010), 66–75.

[15] BOYD-WICKIZER, S., AND ZELDOVICH, N. Tolerating ma-
licious device drivers in linux. In Proceedings of the 2010
USENIX Annual Technical Conference (Berkeley, CA, USA,
2010), USENIXATC’10, USENIX Association, pp. 9–9.

[16] BUGRARA, S., AND AIKEN, A. Verifying the safety of user
pointer dereferences. In Proceedings of the 2008 IEEE Sympo-
sium on Security and Privacy (Washington, DC, USA, 2008), SP
’08, IEEE Computer Society, pp. 325–338.

[17] CHEN, H., MAO, Y., WANG, X., ZHOU, D., ZELDOVICH, N.,
AND KAASHOEK, M. F. Linux kernel vulnerabilities: State-of-
the-art defenses and open problems. In Proceedings of the 2011
Asia-Pacific Workshop on Systems (New York, NY, USA, 2011),
APSys ’11, ACM, pp. 5:1–5:5.

[18] CHEN, H., AND WAGNER, D. Mops: An infrastructure for ex-
amining security properties of software. In Proceedings of the
2002 ACM Conference on Computer and Communications Secu-
rity (New York, NY, USA, 2002), CCS ’02, ACM, pp. 235–244.

[19] CHOU, A., YANG, J., CHELF, B., HALLEM, S., AND ENGLER,
D. An empirical study of operating systems errors. In Proceed-
ings of the 2001 ACM Symposium on Operating Systems Princi-
ples (New York, NY, USA, 2001), SOSP ’01, ACM, pp. 73–88.

[20] CORBET, J., RUBINI, A., AND KROAH-HARTMAN, G. Linux
Device Drivers: Where the Kernel Meets the Hardware. ”
O’Reilly Media, Inc.”, 2005.

[21] CYTRON, R., FERRANTE, J., ROSEN, B. K., WEGMAN, M. N.,
AND ZADECK, F. K. An efficient method of computing static sin-
gle assignment form. In Proceedings of the 1989 ACM Sympo-
sium on Principles of Programming Languages (New York, NY,
USA, 1989), POPL ’89, ACM, pp. 25–35.

[22] DAS, M., LERNER, S., AND SEIGLE, M. Esp: Path-sensitive
program verification in polynomial time. In Proceedings of the
2002 ACM Conference on Programming Language Design and
Implementation (New York, NY, USA, 2002), PLDI ’02, ACM,
pp. 57–68.

[23] DINABURG, A., ROYAL, P., SHARIF, M., AND LEE, W. Ether:
Malware analysis via hardware virtualization extensions. In Pro-
ceedings of the 2008 ACM Conference on Computer and Commu-
nications Security (New York, NY, USA, 2008), CCS ’08, ACM,
pp. 51–62.

[24] FOSTER, J. S., TERAUCHI, T., AND AIKEN, A. Flow-sensitive
type qualifiers. In Proceedings of the 2002 ACM Conference on
Programming Language Design and Implementation (New York,
NY, USA, 2002), PLDI ’02, ACM, pp. 1–12.

[25] GE, X., VIJAYAKUMAR, H., AND JAEGER, T. Sprobes: En-
forcing kernel code integrity on the trustzone architecture. arXiv
preprint arXiv:1410.7747 (2014).

[26] GUO, P. J., AND ENGLER, D. Linux kernel developer re-
sponses to static analysis bug reports. In Proceedings of the 2009
USENIX Annual Technical Conference (Berkeley, CA, USA,
2009), USENIXATC’09, USENIX Association, pp. 22–22.

[27] HENZINGER, T. A., JHALA, R., MAJUMDAR, R., AND SUTRE,
G. Software verification with blast. In Proceedings of the 2003
International Conference on Model Checking Software (Berlin,
Heidelberg, 2003), SPIN’03, Springer-Verlag, pp. 235–239.

[28] JOHNSON, R., AND WAGNER, D. Finding user/kernel pointer
bugs with type inference. In Proceedings of the 2004 USENIX
Conference on Security (Berkeley, CA, USA, 2004), SEC’04,
USENIX Association, pp. 9–9.

[29] KIRAT, D., VIGNA, G., AND KRUEGEL, C. Barecloud: Bare-
metal analysis-based evasive malware detection. In Proceed-
ings of the 2014 USENIX Conference on Security (Berkeley, CA,
USA, 2014), SEC’14, USENIX Association, pp. 287–301.

1022 26th USENIX Security Symposium USENIX Association

[30] LATTNER, C., AND ADVE, V. Llvm: A compilation framework
for lifelong program analysis & transformation. In Proceedings of
the 2004 International Symposium on Code Generation and Op-
timization (Washington, DC, USA, 2004), CGO ’04, IEEE Com-
puter Society, pp. 75–.

[31] LIVSHITZ, B. Soundness is not even necessary for most modern
analysis applications, however, as many. Communications of the
ACM 58, 2 (2015).

[32] LU, K., SONG, C., KIM, T., AND LEE, W. Unisan: Proactive
kernel memory initialization to eliminate data leakages. In Pro-
ceedings of the 2016 ACM Conference on Computer and Commu-
nications Security (New York, NY, USA, 2016), CCS ’16, ACM,
pp. 920–932.

[33] MACHIRY, A., GUSTAFSON, E., SPENSKY, C., SALLS, C.,
STEPHENS, N., WANG, R., BIANCHI, A., CHOE, Y. R.,
KRUEGEL, C., AND VIGNA, G. Boomerang: Exploiting the
semantic gap in trusted execution environments. In Proceedings
of the 2017 Network and Distributed System Security Symposium
(NDSS) (2017), Internet Society.

[34] MARJAMÄKI, D. Cppcheck: a tool for static c/c++ code analysis.
http://cppcheck.sourceforge.net/, December 2016.

[35] MOCHEL, P., AND MURPHY, M. sysfs - The filesystem
for exporting kernel objects. https://www.kernel.org/doc/
Documentation/filesystems/sysfs.txt.

[36] MUTILIN, V., NOVIKOV, E., STRAKH AV, K. A., AND SHVED,
P. Linux driver verification [linux driver verification architec-
ture]. Trudy ISP RN [The Proceedings of ISP RAS] 20 (2011),
163–187.

[37] NEIRA-AYUSO, P., GASCA, R. M., AND LEFEVRE, L. Commu-
nicating between the kernel and user-space in linux using netlink
sockets. Software: Practice and Experience 40, 9 (2010), 797–
810.

[38] NIELSON, F., NIELSON, H. R., AND HANKIN, C. Principles of
program analysis. Springer, 2015.

[39] PALIX, N., THOMAS, G., SAHA, S., CALVÈS, C., LAWALL, J.,
AND MULLER, G. Faults in linux: Ten years later. In Proceed-
ings of the 2011 International Conference on Architectural Sup-
port for Programming Languages and Operating Systems (New
York, NY, USA, 2011), ASPLOS’11, ACM, pp. 305–318.

[40] PEIRÓ, S., MUÑOZ, M., MASMANO, M., AND CRESPO, A.
Detecting stack based kernel information leaks. In Proceedings
of the 2014 International Joint Conference SOCO’14-CISIS’14-
ICEUTE’14 (2014), Springer, pp. 321–331.

[41] PERL, H., DECHAND, S., SMITH, M., ARP, D., YAMAGUCHI,
F., RIECK, K., FAHL, S., AND ACAR, Y. Vccfinder: Finding
potential vulnerabilities in open-source projects to assist code au-
dits. In Proceedings of the 2015 ACM Conference on Computer
and Communications Security (New York, NY, USA, 2015), CCS
’15, ACM, pp. 426–437.

[42] QUINTAO PEREIRA, F. M., RODRIGUES, R. E., AND
SPERLE CAMPOS, V. H. A fast and low-overhead technique
to secure programs against integer overflows. In Proceedings of
the 2013 International Symposium on Code Generation and Op-
timization (Washington, DC, USA, 2013), CGO ’13, IEEE Com-
puter Society, pp. 1–11.

[43] RENZELMANN, M. J., KADAV, A., AND SWIFT, M. M. Sym-
drive: Testing drivers without devices. In Proceedings of the 2012
USENIX Conference on Operating Systems Design and Imple-
mentation (Berkeley, CA, USA, 2012), OSDI’12, USENIX As-
sociation, pp. 279–292.

[44] SALZMAN, P. J., BURIAN, M., AND POMERANTZ, O. Hello
World (part 3): The init and exit Macros. http://www.

tldp.org/LDP/lkmpg/2.6/html/lkmpg.html#AEN245,
May 2007.

[45] SECURE SOFTWARE, I. Rats - rough auditing tool
for security. https://github.com/andrew-d/

rough-auditing-tool-for-security, December 2013.

[46] SPENSKY, C., HU, H., AND LEACH, K. Lo-phi: Low-
observable physical host instrumentation for malware analysis.
In Proceedings of the 2016 Network and Distributed System Se-
curity Symposium (NDSS) (2016), Internet Society.

[47] SPENSKY, C., STEWART, J., YERUKHIMOVICH, A., SHAY,
R., TRACHTENBERG, A., HOUSLEY, R., AND CUNNINGHAM,
R. K. SoK: Privacy on Mobile Devices–It’s Complicated. Pro-
ceedings on Privacy Enhancing Technologies 2016, 3 (2016), 96–
116.

[48] STOEP, J. V. Android: protecting the kernel. Linux Securit Sum-
mit (August 2016).

[49] SWIFT, M. M., BERSHAD, B. N., AND LEVY, H. M. Improving
the reliability of commodity operating systems. In Proceedings
of the 2003 ACM Symposium on Operating Systems Principles
(New York, NY, USA, 2003), SOSP ’03, ACM, pp. 207–222.

[50] TARJAN, R. Depth-first search and linear graph algorithms.
SIAM journal on computing 1, 2 (1972), 146–160.

[51] THE CLANG PROJECT. clang: a C language family frontend for
LLVM. http://clang.llvm.org/.

[52] THE LINUX FOUNDATION. LLVMLinux Project Overview.
http://llvm.linuxfoundation.org/index.php/Main_

Page.

[53] THE LLVM PROJECT. The Often Misunderstood GEP Instruc-
tion. http://llvm.org/docs/GetElementPtr.html.

[54] TORVALDS, L., TRIPLETT, J., AND LI, C. Sparse–a semantic
parser for c. see http://sparse. wiki. kernel. org (2007).

[55] VIEGA, J., BLOCH, J. T., KOHNO, Y., AND MCGRAW, G. Its4:
A static vulnerability scanner for c and c++ code. In Proceedings
of the 2000 Annual Computer Security Applications Conference
(Washington, DC, USA, 2000), ACSAC ’00, IEEE Computer So-
ciety, pp. 257–.

[56] WANG, X., CHEN, H., JIA, Z., ZELDOVICH, N., AND
KAASHOEK, M. F. Improving integer security for systems with
kint. In Proceedings of the 2012 USENIX Conference on Oper-
ating Systems Design and Implementation (Berkeley, CA, USA,
2012), OSDI’12, USENIX Association, pp. 163–177.

[57] WHEELER, D. A. Flawfinder, 2011.

[58] WRESSNEGGER, C., YAMAGUCHI, F., MAIER, A., AND
RIECK, K. Twice the bits, twice the trouble: Vulnerabilities in-
duced by migrating to 64-bit platforms. In Proceedings of the
2016 ACM Conference on Computer and Communications Secu-
rity (New York, NY, USA, 2016), CCS ’16, ACM, pp. 541–552.

[59] YAMAGUCHI, F., GOLDE, N., ARP, D., AND RIECK, K. Mod-
eling and discovering vulnerabilities with code property graphs.
In Proceedings of the 2014 IEEE Symposium on Security and Pri-
vacy (Washington, DC, USA, 2014), SP ’14, IEEE Computer So-
ciety, pp. 590–604.

[60] YAMAGUCHI, F., LOTTMANN, M., AND RIECK, K. General-
ized vulnerability extrapolation using abstract syntax trees. In
Proceedings of the 2012 Annual Computer Security Applications
Conference (New York, NY, USA, 2012), ACSAC ’12, ACM,
pp. 359–368.

[61] YAMAGUCHI, F., MAIER, A., GASCON, H., AND RIECK, K.
Automatic inference of search patterns for taint-style vulnerabili-
ties. In Proceedings of the 2015 IEEE Symposium on Security and
Privacy (Washington, DC, USA, 2015), SP ’15, IEEE Computer
Society, pp. 797–812.

USENIX Association 26th USENIX Security Symposium 1023

[62] YAMAGUCHI, F., WRESSNEGGER, C., GASCON, H., AND
RIECK, K. Chucky: Exposing missing checks in source code for
vulnerability discovery. In Proceedings of the 2013 ACM Con-
ference on Computer and Communications Security (New York,
NY, USA, 2013), CCS ’13, ACM, pp. 499–510.

[63] YANG, J., KREMENEK, T., XIE, Y., AND ENGLER, D. Meca:
An extensible, expressive system and language for statically
checking security properties. In Proceedings of the 2003 ACM
Conference on Computer and Communications Security (New
York, NY, USA, 2003), CCS ’03, ACM, pp. 321–334.

[64] YUN, I., MIN, C., SI, X., JANG, Y., KIM, T., AND NAIK, M.
Apisan: Sanitizing api usages through semantic cross-checking.

In Proceedings of the 2016 USENIX Conference on Security,
SEC’16, USENIX Association, pp. 363–378.

[65] ZAKHAROV, I. S., MANDRYKIN, M. U., MUTILIN, V. S.,
NOVIKOV, E. M., PETRENKO, A. K., AND KHOROSHILOV,
A. V. Configurable toolset for static verification of operating sys-
tems kernel modules. Program. Comput. Softw. 41, 1 (Jan. 2015),
49–64.

[66] ZHANG, H., LI, X.-H., LIU, B., AND QIAN, X. The video
device driver programming and profiting based on v4l2 [j]. Com-
puter Knowledge and Technology 15 (2010), 062.

1024 26th USENIX Security Symposium USENIX Association

