®

Check for
updates

The Leakage-Resilience Dilemma

Bryan C. Ward!, Richard Skowyra!, Chad Spensky?, Jason Martin',
and Hamed Okhravi!®)

1 MIT Lincoln Laboratory, Lexington, USA
{bryan.ward,richard.skowyra, jnmartin,hamed.okhravi}@ll.mit.edu
2 University of California, Santa Barbara, USA
cspensky@cs.ucsb.edu

Abstract. Many control-flow-hijacking attacks rely on information
leakage to disclose the location of gadgets. To address this, several
leakage-resilient defenses, have been proposed that fundamentally limit
the power of information leakage. Examples of such defenses include
address-space re-randomization, destructive code reads, and execute-only
code memory. Underlying all of these defenses is some form of code
randomization. In this paper, we illustrate that randomization at the
granularity of a page or coarser is not secure, and can be exploited by
generalizing the idea of partial pointer overwrites, which we call the Rel-
ative ROP (RelROP) attack. We then analyzed more that 1,300 common
binaries and found that 94% of them contained sufficient gadgets for an
attacker to spawn a shell. To demonstrate this concretely, we built a
proof-of-concept exploit against PHP 7.0.0. Furthermore, randomization
at a granularity finer than a memory page faces practicality challenges
when applied to shared libraries. Our findings highlight the dilemma that
faces randomization techniques: course-grained techniques are efficient
but insecure and fine-grained techniques are secure but impractical.

1 Introduction

Memory-corruption attacks continue to be one of the primary attack vectors
against modern computer systems [2]. The sophistication of memory-corruption
attacks has increased from simple code injection [38] to various forms of code-
reuse attacks [11,43] in response to widespread deployment of defenses such as
W @ X (a.k.a. Data Execution Prevention — DEP).

Leakage-resilient memory-protection techniques [4,7,12,14,35,50,53] are
considered the state-of-the-art in one of several approaches to mitigate the

DISTRIBUTION STATEMENT A. Approved for public release. Distribution is
unlimited.

This material is based upon work supported by the Under Secretary of Defense for
Research and Engineering under Air Force Contract No. FA8702-15-D-0001. Any opin-
ions, findings, conclusions or recommendations expressed in this material are those of
the author(s) and do not necessarily reflect the views of the Under Secretary of Defense
for Research and Engineering.

© Springer Nature Switzerland AG 2019

K. Sako et al. (Eds.): ESORICS 2019, LNCS 11735, pp. 87-106, 2019.
https://doi.org/10.1007/978-3-030-29959-0_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29959-0_5&domain=pdf
https://doi.org/10.1007/978-3-030-29959-0_5

88 B. C. Ward et al.

impact of memory corruption attacks. Such techniques protect the code against
various forms of information-leakage attacks (i.e., direct [45,47], indirect [16,41],
or side-channel-based [8,42]), thus ensuring that the effects of the underlying ran-
domization cannot be sidestepped by an attacker. Leakage-resilient techniques
include various forms of execute-only techniques via memory permissions [4,14]
or destructive reads [50], code-pointer protection via code and data decoupling
[35], and runtime re-randomization techniques [7,12,53].

All of these leakage-resilient techniques crucially rely on the underlying code-
randomization mechanism and its granularity. For example, execute-only mem-
ory can be easily bypassed if an attacker knows the code-section layout. Code-
randomization techniques fall into two categories: virtual-memory randomiza-
tion and physical-memory randomization. Virtual-memory randomization only
changes the mapping of virtual addresses to physical addresses, and does not
change the contents of physical memory. Because such mapping can only be as
fine as a page, virtual-memory-randomization mechanisms have page-level gran-
ularity or coarser. Examples of such mechanisms include library-level random-
ization [7,39] and page-level randomization [5]. The second category, physical-
memory randomization, is any technique that changes the contents of physi-
cal memory. These include function-level [23,31], basic-block-level [12,51], and
instruction-level [18,30] randomization mechanisms.

In this paper, we study the security and practicality tradeoffs of code random-
ization for leakage-resilient defenses. We first show that virtual-memory random-
ization provides insufficient security guarantees. Extending the idea of partial
pointer overwrites, we illustrate an attack, which we call Relative ROP (Rel-
ROP), that can bypass such techniques in the absence of additional, protection
mechanisms. Specifically, we show that by simply overwriting the least-significant
bytes of a pointer, an attacker can address sufficient gadgets within a page to
build an exploit, and because the granularity of virtual-memory randomization
cannot be finer than a page, this limits their effectiveness in practice.

Although the idea of partial pointer overwrites existed in the literature before
[8,19], building a complete attack based on them faces a number of challenges,
including the difficulty of chaining gadgets together and the lack of access to
many gadgets due to randomization of their addresses. To overcome these chal-
lenges, we illustrate how the Procedure Linkage Table (PLT) and the Global
Offset Table (GOT) can be abused as a layer of indirection to facilitate exploita-
tion. We show that function pointers within the GOT may be partially over-
written to point instead to gadgets within the page of the original target. We
illustrate that numerous gadgets are accessible in each page through partially
overwriting GOT entries. We analyze many popular Linux applications and find
that many such gadgets can be invoked while the system is protected by code
randomization and many different leakage-resilient defenses.

To further demonstrate the realism of RelROP, we build a proof-of-concept
exploit against PHP (Sect.6), which deterministically bypasses many leakage-
resilient defenses that rely on virtual-memory randomization.

The Leakage-Resilience Dilemma 89

We then investigate physical-memory randomization mechanisms. While
these techniques can be arbitrarily fine-grained, and are thus secure against
partial-overwrite attacks, they face many practicality challenges. Among them,
is the fact that such techniques require actually moving memory contents, which
creates challenges for shared libraries. Such challenges give rise to tradeoffs
between security and performance or practicality.

Our findings highlight the dilemma when designing leakage-resilient memory-
protection techniques, and illustrate that design choices must consider a fine
trade-off between security and practicality in this domain. Since all of the pro-
posed techniques in this domain face either security challenges or practicality
challenges (or both), we posit that more research is needed to build effective and
efficient leakage-resilient techniques.

The contributions of this paper are as follows:

— We provide an in-depth study of security and practicality implications of code
randomization in leakage-resilient memory-protection techniques.

— We illustrate that virtual memory-based code randomization provides insuf-
ficient security. We leverage the idea of partial pointer overwrite to build a
generic attack, called RelROP, that overwrites one or two least significant
byte of a code pointer to access gadgets within the same page as the target.

— We conduct extensive analysis of the prevalence of RelROP gadgets, and find
that sufficient RelROP gadgets are found in 94% of analyzed binaries.

— We show the realism of RelROP via a proof-of-concept exploit against PHP.

— We discuss the practicality challenges of physical-memory-based randomiza-
tion techniques and argue that security and practicality trade-offs need to be
considered when leveraging code randomization for leakage resilience.

2 Randomization Granularity

Leakage-resilient techniques, including TASR [7], Shuffler [53], Remix [12], Iso-
meron [16], Oxymoron [5], Heisenbyte [50], NEAR [52], Morton et al. [36], XnR
[4], and HideM [22] mitigate the impact of information-leakage attacks on code
randomization/diversification. They employ various mechanisms including mem-
ory permissions [4,14], destructive reads [50], code pointer protection [35], and
runtime re-randomization [7,12,53] to prevent direct memory disclosures (e.g.,
[4,5,22,52]) and sometimes both direct and indirect memory disclosures (e.g.,
[7,12,14,16,35,53]).

A key component of every leakage-resilient scheme is a one-time randomiza-
tion of memory (or more, in the case of re-randomization) in order to obscure
the memory layout from the attacker. Once obscured, the remainder of the tech-
nique (e.g., execute-only memory) seeks to ensure that the attacker cannot leak
memory in order to discover the memory layout.

2.1 Virtual-Memory Randomization

One approach to randomizing memory is to randomize the mapping between
virtual- and physical-memory addresses. Attackers relying on code reuse must

90 B. C. Ward et al.

know the virtual-memory address at which physical code pages are mapped. This
is the driving principle behind ASLR [39] and its descendants, for example.

Randomizing virtual addresses is straightforward, as only the page tables for
that process need to be changed rather than the underlying physical memory
(i.e., no memory moves or copies are required). Therefore, such randomization
can be performed efficiently, and ensures that physical pages mapped into mul-
tiple processes (e.g., shared libraries) experience no disruption.

Randomization Granularity. Relying on virtual-memory randomization imposes
a fundamental limitation on the granularity of randomization. Objects smaller
than a page of memory cannot be independently randomized, as page tables
cannot be used to reference the addresses of memory objects smaller than a
page. Thus, some of the low-order bits of an address remain unchanged after
randomization. While the exact size of memory pages is architecture-specific,
4KB is the smallest page size supported by common architectures such as x86,
x86-64, and ARM.

In practice, defenses using virtual-memory randomization operate on the
library- or page-level. Library-level is the most coarse-grained approach to
memory randomization, in which the application binary and base addresses of
shared libraries are randomized. It is implemented at load-time by ASLR [39].
TASR [7] provides a leakage-resilient version by re-randomizing in response to
input/output system-call pairs. Note that in either case, all memory objects
within a library remain at fixed relative offsets to one another, but the relative
offsets among libraries are randomized.

Page-level randomization, implemented by Oxymoron [5] at load-time,
attempts to provide enhanced security by randomizing at a finer granularity.
This ensures that inter-page offsets are randomized, but leaves intra-page offsets
fixed.

2.2 Physical-Memory Randomization

Rather than change virtual-to-physical mappings, a randomization technique can
instead reorder data/code in physical memory. This requires memory copies that
induce overhead, but can operate at an arbitrary level of granularity. Physical
memory randomization must also account for how randomization of shared pages
is handled, since different processes may be simultaneously attempting to access
them. This can have both security and practicality implications.

Randomization Granularity. Unlike virtual-memory randomization, physical-
memory randomization may operate at any level of granularity.! This can dra-
matically limit, or entirely remove, the availability of gadgets near code pointers.
Recall that low-order bits are fixed in virtual-memory randomization, because

! In practice, physical-memory randomization has only been applied at the sub-page
level, as virtual-memory randomization is more efficient for coarser granularities.

The Leakage-Resilience Dilemma 91

addresses are necessarily page-aligned (i.e., the lower 12 bits are an offset into
a page, and the upper bits specify the page in a 4K-size page).

Physical memory randomization does not have this constraint (as it does not
rely on page tables), and can fully randomize the address of a memory object.
For example, it could shift a function by a single byte. This would modify every
bit in the address of that function, preventing an attacker from using their local
copy of an application to infer anything about the victim’s memory layout.

Physical-memory-randomization defenses have been presented at the func-
tion [53], basic-block [12,51], and instruction [26] randomization levels. Shuffler
[63] randomizes the base address of all functions in a process image. Shared
libraries are statically linked at load-time, in order to ensure that their functions
can be safely relocated. Remix [12] and Binary Stirring [51] both randomize
at the basic-block level. The former re-randomizes periodically, while that latter
performs a single load-time randomization. ILR [26] uses process-level virtualiza-
tion to randomize at the instruction granularity on program load. None of these
approaches randomize shared libraries. We will discuss why later in Sect. 8.

3 Threat Model

We assume that a remote attacker has access to a memory-corruption vulnera-
bility that enables arbitrary read and write access to userspace memory. This is
consistent with common vulnerabilities that, for example, give attackers control
over a buffer index (e.g., CVE-2016-0034), or do not properly safeguard format
strings (e.g., CVE-2015-8617).

We make the following assumptions about the defensive configuration of the
victim process. (1) W@ X is deployed on the system being attacked, so that code
injection and code modification are prevented. (2) A leakage-resilient defense is
deployed that prevents direct memory disclosures (i.e., leakage of code pages).
(3) The Global Offset Table exists. A GOT exists as long as shared libraries are
used, and is even present for an isolated binary if it is compiled to be position-
independent. Additionally, the majority of leakage-resilient defenses identified in
this paper do not extend protections to the GOT, with the exceptions of Oxy-
moron [5] and Readactor [14]. In Sect. 8, we discuss the implications of requiring
GOT protection in more detail. (4) The layout of code regions in memory have
been randomized, so that the attacker does not have a priori knowledge of the
location of code in memory.

This threat model is consistent with that of existing leakage-resilient defenses.

4 Relative ROP Attacks

In this section, we describe a code-reuse attack that generically circumvents
many leakage-resilient defenses that rely on virtual-memory randomization. We
show that an attacker can use existing code pointers to launch meaningful
exploits. This is achieved by partially overwriting the low-order byte of code
pointers such that they point to a relative offset within the randomized region,

92 B. C. Ward et al.

without knowing or needing to corrupt the randomized high-order bytes of that
pointer. Thus, we refer to these attacks as Relative ROP (RelROP).

4.1 Partial Pointer Overwriting

A critical assumption to the security of memory randomization is that pointers
can only be corrupted in toto. However, pointers in modern architectures are not
atomic, and in fact require multiple bytes of memory to encode. Furthermore,
byte-level memory writes are possible on most common architectures, including
x86, x64, ARM, and MIPS. A partial pointer overwrite can be used to overwrite
select bytes within a word. Partial pointer overwrites have been leveraged in
previous exploits [8,19], however, in this work we leverage them in a more general
attack technique, RelROP.

In this paper, we assume each memory page is 4 KB, and aligned on 4 KB
boundaries. Therefore, the low-order 12 bits of each address represent the offset
of the address within the page, while the high-order bits identify the page itself.
We define a memory paragraph to be the subset of a page that is addressable
by overwriting the low-order byte of a pointer. Thus, paragraphs are aligned
28 = 256 byte regions of memory.

If virtual-memory

. . . OXFF..: >

randomization is app-
. Functi Function
lied, then the con- oot ontor

—- 9340824 Attacker 0x??B2
tents of each page I 02052 Provided : 0x2?275 «—— Attacker
are fixed, and can | | Provided

. . | 0x??7B

be determined offline | 0x40B2 - i

| enign

. - | Function

by an attacker. There P, | Gadget

| co - 0x??7B
fore, the memory para- !

Borni

graphs are also fixed, ... 0x4082 Funstion

and the attacker can i 0x27B2

overwrite the low-order [

byte of an address to N E . e
point to any gadget 0200
X
within the paragraph. Full Pointer Partial Pointer
Overwrite Overwrite

This general concept is
depicted in Fig. 1. The
question marks denote
that those bytes of the pointer are both unknown to the attacker (due to the pres-
ence of a leakage-resilient technique) and uncorrupted by the attacker. The low-
order byte, however, which denotes an offset into the paragraph, are corrupted
by the attacker by only overwriting a subset of the bits encoding the pointer.
The corrupted pointer now points to a gadget within the paragraph, despite the
presence of a leakage-resilient technique that protects pointers from disclosure.
Note that the attacker-controlled pointer cannot point outside of the page with-
out learning or guessing the value of randomized high-order bytes. Moreover,
it cannot point to any other paragraph within the target page because even

Fig. 1. Partial vs. full pointer overwrites

The Leakage-Resilience Dilemma 93

though bits 9-12 of the address are known to the attacker (from an attacker’s
local copy), they cannot be overwritten by byte-granularity memory-corruption.

At a high level, all that is required to carry out the attack is the ability to
overwrite the low-order byte of the pointer that encodes a position within the
pointed-to paragraph, while avoiding any corruption of the randomized higher-
order bytes. This can be accomplished using a direct memory-write vulnerability
(similar to CVE-2017-0106).2 Such vulnerabilities arise from unchecked array
offset references, for example.

4.2 RelROP Chaining

In order to construct a ReIROP gadget chain, we leverage the layer of indirection
afforded by the procedure linking table (PLT) and the global offset table (GOT).
Each externally linked function, such as those in libc, is invoked via a call
instruction to an absolute address within the PLT. The code within the PLT
performs a lookup of the address of the called function within the GOT, and
redirects control flow to that address. The GOT and PLT have two key features
that enable RelROP chaining.

First, the GOT is in the data region, which is subject to neither the write
protections of W@ X nor to randomization. Thus, entries in the GOT are vulner-
able to partial pointer overwrites. By corrupting GOT entries, the pointer can
be offset relative to the function’s intended entry point into an attacker-chosen
memory region within the paragraph pointed to by that entry.

Second, the PLT is not part of the .text/.code section, and is therefore not
randomized. It does contain code pages, however, so both W & X and leakage-
resilience are in effect. Thus, the PLT itself cannot be directly leaked. How-
ever, the GOT contains pointers into the PLT in order to support lazy loading
of library functions. This standard functionality allows function addresses to
be resolved only on use, increasing the speed of program loading. However, it
requires pointing un-initialized function pointers (e.g., _exit should contain an
entry back to its PLT entry) to stub code in the PLT, thus leaking its location.

With these capabilities, a series of pointers to functions in the PLT can be
placed on the stack, similar to a standard ROP attack. When these pointers are
dereferenced, they will be redirected via the corrupted GOT to attacker-chosen
gadgets. This permits chaining of RelROP attacks.

5 RelROP Prevalence Analysis

RelROP attacks leverage GOT entries to address gadgets at a relative offset from
that pointer’s initial location. In order to investigate the prevalence of gadgets
accessible at the paragraph level of granularity, we constructed an analysis tool
and applied it to over 1,300 binaries, analyzing the libraries and functions that
were dynamically linked by these binaries. In this analysis, we identify all gadgets
that are accessible by partially overwriting the low-order byte of a GOT entry.

2 Note that other vulnerability types could also be used. For example, buffer overflows
(resp. underflows) could be used, in little-endian (resp. big-endian) architectures.

94 B. C. Ward et al.

Analysis Tool

= = = = = = = = = = e = = e e e -
1 1
1 1 1
1 Gadget 1 1
1 P %rax 1
1 Gadget Gadget 2 !
1 Finder mo 13, trdx 1
ca. * ($rbx) I
BINARY | Gadget 3 foo ()
T pop Srsi 1
dd $rsp, 0x2 Gadget 1
1 i:rj srsp, 0x28 1
1
! , | reporT
I Correlation
" I Binary Control-Flow Graph Engine 1
- 1 Analyzer y T
e 1 foo ()/ - X 1
esi | (bar () 1
: . \ !
1 . 1
1 1
Dynamically 1 1
Linked Library 1 1
1 1
1 1
1 1

Fig. 2. RelROP gadget prevalence analysis tool architecture

5.1 Analysis-Tool Architecture

The high-level architecture of our analysis tool is depicted in Fig.2. An input
binary is processed in three phases.

First, we leverage angr [44], an open-source binary analysis framework, to
identify all of the libraries that are linked to a given binary. Then, all conventional
ROP gadgets are identified in all of these libraries using an off-the-shelf tool
(these are filtered later). We chose to use the open-source tool rp++ [3] for this
purpose, with a search depth of 8 instructions (i.e., each identified gadget is at
most 8 instructions long).

Next, we use angr to identify all functions from libraries that are actually
imported by the binary. That is, we only consider functions that actually appear
in the binary’s PLT, and are thus usable by RelROP. Finally, we use the function
information from angr to identify all of the gadgets that can be accessed by
overwriting the low-order byte of that function’s GOT entry. Note that for each
case, gadgets can be found within the function (i.e., a positive offset) or within
the memory before the function (i.e., a negative offset). This is because the
physical memory pages of these libraries must remain static during runtime.
Thus, in the case of paragraph level randomization we consider every gadget
within the memory paragraph (e.g., if the function pointer is 0x11223344, any
gadget in the range 0x11223300-0x112233FF is accessible).

5.2 Analysis of Real-World Binaries

In order to characterize how prevalent RelROP gadgets are, we ran our tool
on every binary contained within the /usr/bin and /usr/sbin directories on a
developer machine (Ubuntu 16.04), totaling 1,365 binaries with 577 dynamically

The Leakage-Resilience Dilemma 95

linked libraries. The results of this analysis are summarized in Table1. In this
table, the first column represents the major gadget classes, and the next two
columns depict the percentage and total, respectively, of analyzed binaries that
include a gadget of each class at the paragraph granularity. The percentage of
binaries with such gadgets accessible through libc is also included alongside the
results, as attacks using libc gadgets are more desirable because of their reusabil-
ity across binaries. These results demonstrate that there are ample gadgets avail-
able via partial pointer overwriting even when the attacker is constrained to the
gadgets within a single byte of a code pointer.

The results in Table1 summarize paple 1. Gadgets within paragraph of
raw metrics on the number of gadgets GOT entry
available, but do not directly address
whether there are sufficient gadgets
to carry out a RelROP attack. The
next step in our evaluation is to iden-
tify the fraction of applications that
have enough RelROP gadgets to carry PP &% 80.8%/70.2% 64493/12196
out a more complete malicious pay- mov rax|99.7%/99.7% |1118428/378268
load, such as spawning a shell. Specif- Pop rbx 99.7%/96.3% | 2326697/550486
ically, we consider an application vul- mov rbx|82.3%/69.0% 81541/21715
nerable to a RelROP-spawned shell if pop rcx|79.2%/63.4% 43827/14253
it includes either a mov or pop gad- mov rcx 90.8%/83.7% | 214140/81593
get for all the registers needed for pop rdx 66.9%/46.7% 28827/11845
the execve syscall (i.c., rax, rdx, | o 4. 99.7%/99.7% | 418448/151041

rsi, and rdi), as well as a syscall .
gadget. Our analysis determined that pop rsi 95.6%/92.2% 123090/20512
i199.7%/99.7% 426279/96681

94.4% of the binaries we considered ™V TSt
are vulnerable, and 91.4% are vulner- POP rdi 95.2%/91.6% 97963/22853
able if gadgets are restricted to libc mov rdi|93.6%/86.9% | 831198/189329
only. These results suggest that vir- syscall|94.8%/93.5% |1067064/814589
tual memory randomization is not, on

its own, sufficient to prevent RelROP attacks.

We note that in practice, an application may have gadgets that affect all of the
necessary registers, but chaining the gadgets together for a successful attack may
not be feasible given other side effects present in the gadgets. Additionally, our
results are predicated on the completeness of our gadget-analysis tool, and other
gadget analyses may identify other gadgets. These results are thus presented as
indicative of RelROP prevalence, but are not claimed to be comprehensive.

Gadget | Percentage of | Total number
binaries with | of gadgets/libc
gadgets/libc | portion
portion

6 Real-World Exploit

For our real-word exploit, we selected our target based on disclosed CVEs and not
the availability of gadgets, since our prevalence analysis had already shown that
there were likely enough gadgets to construct an exploit payload. Our real-world
exploit targets the popular PHP: Hypertext Preprocessor (PHP). Specifically we

96 B. C. Ward et al.

Table 2. List of ROP gadgets identified within the entry paragraph of library functions
used by PHP 7.0.0

Library Function Offset Gadget
libc-2.23.s0 inet_ntoa 0x47 pop rax; mov rax,rbx;
pop rdx; pop rbx; ret;
libc-2.23.s0 uname 0x05 syscall;
libicuuc.s0.55.1 u_isISOControl_55 0x05 pop rsi; setnbe dl; cmp edi,0x0000009F;

setbe al; and eax,edx; ret;
libicuuc.so0.55.1 UnicodeString::doCompare 0x03 pop rdi; or byte [rcx-0xOA],al; ret;
libxml2.50.2.9.3 xmlParseBalancedChunkMemory 0x04 pop rcx; add byte [rax],al;

add byte [rsi+0x06],bh; ret;

targeted PHP version 7.0.0, and leveraged a known format-string vulnerability
(i.e., CVE-2015-8617 [1]) as a proof-of-concept for both leaking and exploiting
the GOT.

Note that because of the existence of W & X, code regions cannot be written
to and data regions cannot be executed. Moreover, because of the deployment
of a leakage-resilient defense, code regions cannot be reliably read. As a result,
we only assume a read/write capability to data pages of memory in our exploit.

6.1 Exploit Detalils

The goal of our exploit is to achieve control-flow hijacking while PHP is protected
by a leakage-resilient defense using virtual-memory randomization up to and
including page-level randomization (thus, we are restricted to gadgets within the
paragraph of a function pointer). Since PHP is an interpreter, we assume that
the attacker is permitted to execute their own malicious PHP file on a remote
server, as is common on most hosting providers. To demonstrate a powerful
attack, we design an exploit that invokes the execve system call to spawn a
new shell. This provides the attacker with powerful remote control over the
compromised machine with elevated privileges from that of the original PHP
script. To accomplish this, we must find a syscall-instruction gadget and a set
of gadgets to set the necessary argument registers (i.e., rax, rdi, rsi, and rdx).

We applied the tool described in Sect.5 to analyze, offline, a local copy of
PHP to identify all of the gadgets that are contained within the entry paragraph
(i.e., the paragraph surrounding the pointer to a function’s entry point) of every
function that is imported by PHP. Note that we can craft our malicious PHP file
to specifically call those functions that contain the required gadgets to ensure
that the GOT will be populated before our exploit. Our attack is limited to only
use gadgets that are contained within entry paragraphs (i.e., the single-byte
offset from the function-entry point), which is encoded in the GOT. This constant
offset can be added by overwriting only the low-order byte in the GOT entry,
which is not affected by randomization at the page-level or coarser granularity.
The gadgets identified by our tool are shown in Table 2.

It is worth noting that our pop rdi gadget depends on the value of rcx-0x0A
being a valid and writable memory region. Similarly, our pop rcx gadget requires

The Leakage-Resilience Dilemma 97

rax and rsi+0x06 to be writable. Fortunately, we have both pop rax and pop
rsi gadgets that we can use to set these values to known locations in the GOT,
which we know to be writable. We can then similarly set rcx to a known GOT
address to achieve a complete payload.

In traditional ROP attacks, the attacker places the absolute address of the
gadgets directly on the stack in order to execute them in the payload. However, in
RelROP, we are working with the constraint of virtual-memory randomization
and leakage resilience, thus RelROP places the PLT addresses on the stack,
which will be automatically resolved to our corrupted GOT entries.

To set up the exploit, we leverage the

fact that the .data segment, including the 37— *| uieteoronteor So0ms

GOT, is not randomized and is always at — :_|2

a fixed memory location. In the case where T

this is not true, we could use our memory- 3 JUNK

read vulnerability (i.e., our format-string i::: nl::@?m [~

vulnerability) to leak the location of the one

GOT. Given any GOT address, we can triv- JUNK 4

ially calculate the base address, and there- : L i

fore the address of the functions containing [P

our gadgets, as the order of the GOT entries Lyl o istsocontrol sserir |

do not change. This same format string can zel 0 6

be leveraged to read the contents of the B i“et*J"U:O;@PLT M

GOT to obtain the base address of the PLT, 7 or

as unresolved functions will store pointers 0x38 zax

to their PLT entry due to lazy binding of 1 i”e“}“UtNOKa@PLT

library functions. v 5 8
At this point, we have enough informa- JONK

tion to modify the GOT entries and build UnicodeSteing: idoronpareGoLt

the set of values that need to be placed on 9 L -

the stack when the exploit begins executing.

Next, we modify the lower-order bits
of the GOT entries for gethostbyname,
php_uname, intltz_to_date_time_zone,
IntlChar: :isIS0Control, and DOMDocument : : appendXML (PHP functions that
call the functions listed in Table 2) by partially overwriting each entry with the
offset of the gadget located in each respective function.

We start by using an assumed arbitrary-write stack-corruption vulnerability
to place the proper values on the stack and point the return address to the first
gadget. The stack is setup similarly to a traditional ROP payload, containing
data that will end up in registers, and addresses of gadgets to be executed.
Instead of using the absolute address of the gadgets, however, we use the address
of the PLT entries of the functions containing the gadgets. It is important to
emphasize that we know the addresses in the PLT from pointers in the GOT
used for lazy binding, not from a leakage of the PLT that is prevented by the
leakage-resilient defense. The stack during our RelROP attack is shown in Fig. 3.
The full exploit is shown in Fig. 4.

Fig. 3. The stack during exploitation

98 B. C. Ward et al.

STACK PLT GOT Libraries
u_islsoControl 5 LIBC
SQPLT inet_ntoa@LIBC L
L0x47 0x47
/ = [~ inet ntoa |
inet_ntoa@PLT unameeépLT &K /¢ 0 1 pB——————-
ul ne@LIBC
; 0x05
inet_ntoa@PLT T_isISOControl 55 +0x0 e |roxo0s

@PLT

u_isISOCont
4 inet _ntoaeeir L‘LLBCVLSUC LIBXML
+0x0

¥mlParseBalancedC
hunkMe: @pPLT

0x04

[xmlparseBalance |
dChunkMemory

U_1s150Control_
S5Q@PLT

xmlParseBalanced
inet_ntoa@PLT hunkMemory@PLT

L

xmlParseBalancedCh LIBCUUIC

unkMemory@LIBXML _ — _ _ _ _ 1}Foxo0s
+0x04 u_isISoControl
5

inet_ntoa@PLT

UnicodeString::
doCompare@PLT [} 0x03

UnicodeString::
uname@PLT doCompare

Fig. 4. PHP RelROP exploit

7 Impact on Defenses

In this section, we consider the impact of RelROP attacks on two classes of
defenses. Randomization-focused defenses are those whose primary mechanism
for mitigating attacks is (re)-randomization of memory at a specific level of gran-
ularity. Randomization-dependent defenses are those that require fine-grained
memory randomization, but whose primary contribution is orthogonal to ran-
domization (e.g., execute-only memory).

7.1 Randomization-Focused Defenses

Table 3 summarizes the impact of RelROP on leakage-resilient defenses. These
include both leakage-resilient defenses that rely on memory re-randomization,
and fine-grained randomization mechanisms that may be used by leakage-
resilient defenses that are dependent on a fine-grained randomizer. The table
also indicates whether the requirements to conduct a RelROP attack are sat-
isfied. We require a GOT to exist and not be additionally protected, and that
the target be protected by either virtual-memory randomization, or physical-
memory randomization that does not extend to shared libraries.

TASR is susceptible RelROP attacks. It is a leakage-resilient defense that
re-randomizes code at the library level. Since the GOT is in the data region, it is
not randomized by TASR. Re-randomization is applied on every read/write pair
to mitigate the effects of memory disclosures. While its coverage does extend
to shared libraries, it is implemented via virtual-memory randomization, and is
therefore susceptible to RelROP attacks given the analysis presented in Sect. 5.

Remix is a leakage-resilient defense that periodically permutes the basic-block
ordering within functions. This necessitates physical memory copies and code
patching to ensure that direct jumps point to the correct target. Consequently,

Table 3. Susceptibility of leakage-resilient techniques to RelROP

The Leakage-Resilience Dilemma 99

Defense name Granularity | Randomization | Unprotected | Unprotected | ReIROP
GOT libraries

Leakage resilience through memory re-randomization

TASR [7] Library Virtual Yes No Yes

Shuffler [53] Function Physical No No No

Remix [12] Basic Block | Physical Yes Yes Yes

Memory randomization

Oxymoron [5] Page Virtual No No No

Binary Stirring [51] | Basic Block | Physical Yes Yes Yes

ILR [26] Instruction | Physical Yes Yes Yes

Remix does not protect shared libraries. Since RelROP attacks use only gadgets
in shared libraries, Remix is susceptible to RelROP.

Binary Stirring [51] is a load-time basic-block-level randomization technique.
It relies on load-time patching of the binary to redirect direct jumps to ran-
domly determined basic-block locations. Consequently, shared libraries are not
randomized and can be leveraged to conduct RelROP attacks.

ILR [26] uses process-level virtualization to perform instruction-level ran-
domization. Since this does not extend across processes, shared libraries are not
protected and RelROP attacks can bypass it.

Oxymoron [5] randomizes code on the page level, as well as replacing func-
tion pointers with trampolines into a protected, GOT-like memory region. This
region is isolated via memory segmentation and segment registers. This prevents
RelROP attacks due to the inability to partially corrupt function pointers in
the GOT. Unfortunately, attacks against it have already been demonstrated [16]
and memory segmentation is largely unsupported in 64-bit architectures.

Shuffler is a leakage-resilient defense that is not susceptible to RelROP
attacks, as it removes the GOT and relies purely on direct calls to libraries
that are statically linked at load time. It periodically re-randomizes code at
the function level at a configurable interval. Since functions may be smaller
than pages, this randomization requires physical memory copying. This neces-
sitates statically linking shared libraries. Due to the way Shuffler implements
re-randomization, the size of each process’ code image (including all libraries)
is approximately doubled. As a result, the memory overhead on a multi-process
system may be prohibitive. Shuffler also requires a dedicated per-process thread
to asynchronously perform physical memory copies, which may impact cache and
memory performance. Unfortunately, no analysis is provided as to the perfor-
mance of Shuffler in a multi-process environment, so the true overhead is difficult
to estimate.

100 B. C. Ward et al.

7.2 Randomization-Dependent Leakage-Resilient Defenses

The defenses considered in this section rely on the existence of a fine-grained ran-
domization mechanism, but their primary contribution is an orthogonal approach
to leakage resilience. Since “fine-grained randomization” is often underspecified,
the effect of RelROP attacks on each defense cannot be empirically evaluated.
Thus, we instead consider whether the GOT/PLT is additionally protected or
other implementation details disrupt RelROP attacks.

Multivariant Exzecution. Multivariant-execution defenses, such as Isomeron [16],
are designed to disrupt ROP and JIT-ROP attacks by probabilistically switch-
ing program execution among two or more replicas of code, each with different
memory layouts. Isomeron specifically applies “fine-grained” code randomiza-
tion to one of two replicas, and leaves the other unmodified. Execution switches
uniformly at random between each replica at the function-call granularity. This
disrupts code-reuse attacks that rely on absolute jumps to memory addresses,
as the location of gadgets may change at every gadget invocation. However,
if the underlying code randomization is virtual-memory randomization, it does
not disrupt RelROP attacks. GOT entries in Isomeron are resolved prior to
diversification, and Isomeron adds a constant offset to the result if it elects to
change the replica being run. Since RelROP attacks corrupt GOT entries prior
to this calculation, they are “fixed” by Isomeron to point to the correct replica.
If physical-memory randomization is applied to either replica, the partially cor-
rupted pointer would point to a different location in each replica, and therefore
the attack would not succeed.

Destructive Code Reads and Execute-Only Memory. Techniques that implement
destructive code reads [36,50,52] aim to prevent code-reuse attacks that rely on
direct memory disclosure. While all code pages can be both read and executed
(in contrast to execute-only memory), attempting to execute code that has pre-
viously been read will trigger an error. In response to inference attacks that
allow implicit disclosure of code by reading adjacent bytes [46], this approach
has recently been combined with semantic-preserving binary re-randomization
[36]. Execute-only-memory defenses [4,22] aim to stop the same class of threats
as defenses that implement destructive code reads. Rather than destroying code
that is read, however, execute-only defenses cause a memory-permission violation
at any attempt to read executable memory.

Both of these defense classes rely on the necessity of an attacker reading code
pages prior to executing that code. However, RelROP attacks rely entirely on
reading data pages and corrupting code pointers without first disclosing that
code (or its address). Only the GOT itself needs to be read, which, as data, does
not trigger destruction. Therefore, if virtual-memory randomization is used, then
partial pointer overwriting can be used to corrupt code pointers to known gadgets
within the containing code paragraph. However, if physical-memory randomiza-
tion is applied, then the byte value needed for the partial overwrite cannot
be determined without first disclosing the randomization, and thus physical-
memory randomization would prevent a RelROP attack.

The Leakage-Resilience Dilemma 101

Code-Pointer Protection. Another approach to preventing code-reuse attacks
is to protect all pointers to code from disclosure or corruption. Pointguard
[13] encrypts pointers and decrypts them just prior to use via a register-stored
key. ASLR-Guard [35] uses a combination of encryption and protected lookup
tables to hide the value of function pointers. Readactor [14,15] combines execute-
only memory, fine-grained code randomization, register randomization, PLT ran-
domization, and replacement of function pointers with trampolines into a pro-
tected lookup table. Notably, however, Readactor has been shown vulnerable to
profiling-based attacks [41].

Encrypting or otherwise protecting all bytes of function pointers prevents
partial overwrites, as low-order bits are no longer vulnerable. In addition, use of
trampolines into lookup tables decouples the pointer value from any gadgets near
its eventual target, thus making relative-address attacks only able to (at best)
change the index into the lookup table. If table randomization and booby traps
are used, as in Readactor, even this capability is removed. Thus, code-pointer
protection techniques are effective in countering RelROP attacks.

8 Discussion

Physical-memory randomization at the granularity of instruction or basic-blocks,
applied ubiquitously to the binary and its linked libraries would not be vulner-
able to the RelROP attack described earlier. However, such a technique faces
a number of practicality challenges. Furthermore, subsequent design decisions
to address those challenges themselves come with security/practicality impli-
cations. All of these challenges arise from dealing with shared physical memory
pages, such as those in linked libraries. In this section, we first discuss the practi-
cal challenges of physical-memory randomization, then we discuss other possible
RelROP mitigations.

8.1 Implications of Physical-Memory Randomization

Cross-Process Disclosures. Many physical-memory randomization defenses (see
[34] for an overview) apply randomization at compile time, by, for example,
inserting NOPs to change relative distances between instructions. These one-
time randomization approaches suffer from the fact that a memory disclosure in
any process using a shared code page (e.g., libc pages) allows the attacker to de-
randomize that page in all processes using that code page. Thus, leakage-resilient
defenses must be applied to every process that links shared libraries.

Shared-Library Synchronization. Physical-memory randomization that takes
place at load- or run-time must deal with the fact that multiple processes execut-
ing code from shared libraries do not synchronize their accesses, as these pages
are traditionally read-only. This becomes problematic when attempting to move
that code to another physical memory region. Each process may have stack/heap
pointers to different regions of the shared library (especially if library functions

102 B. C. Ward et al.

call each other), and have instruction pointers at different addresses within that
library. All of these pointers must be adjusted to point to the library’s new
location in a way that is transparent to each running application.

Shuffler [53] addresses the issue by statically linking all libraries into a pro-
cess image at load time, and maintaining two copies of the process binary and
libraries. One copy is active and used for execution, and the other is asyn-
chronously re-randomized by a dedicated thread. When the copy is complete,
execution shifts to the new version and re-randomization is applied to the other
copy. Unfortunately, this means that if n processes are executing on a system,
there are 2n copies of libc, 2n copies of each application binary, and up to 2n
copies of other shared libraries. Remix [12], Binary Stirring [51], and ILR [26]
address this issue by simply not protecting shared libraries, and limiting them-
selves to the unshared physical pages corresponding to the main application
binary. As shown in Sect. 5, however, this still provides ample attack surface to
create a malicious payload. In fact, most valuable gadgets, such as those capable
of invoking a system call, are found in 1ibc and not the binary itself.

Memory Thrashing. Runtime re-randomization based on physical-memory ran-
domization, such as Remix [12] and Shuffler [53], periodically perform physical
memory copies in order to relocate code regions. This interferes with the per-
formance of the cache and memory subsystem due to large-scale invalidation of
cache lines, and additional memory traffic. Depending on the rate at which re-
randomization is performed, memory thrashing can become a significant source
of overhead. A study of cache and memory performance observed such cache and
memory contention can result in slowdowns of a factor of up to 2.5x [32].

8.2 RELRO

A defensive feature in some operating systems called Relocation Read-Only (or
RELRO) is sometimes used to protect GOT. Partial RELRO forces GOT to
come before BSS, preventing some types of buffer overflows on global variables.
Full RELRO marks the entire GOT as read-only.

While partial RELRO has no impact on RelROP, full RELRO breaks it.
However, full RELRO has several performance tradeoffs, and is not commonly
deployed in practice. A recent study shows that as low as 3% of binaries are
protected with full RELRO [48]. There are a few reasons for this. Full RELRO
requires all symbols to be resolved at load time, which significantly slows down
program startup. Full RELRO is also not a default option in GCC (partial
RELRO is). Many Linux distros also do not have RELRO, such a RHEL v6
(and earlier), which will be actively supported until 2021.

9 Related Work

Our work mainly relates to memory-corruption vulnerabilities and mitigation
thereof. The literature in these areas is vast. We refer the interested reader to

The Leakage-Resilience Dilemma 103

the relevant surveys [10,34,49] and focus on closely related work. Since we have
already discussed may related efforts in the context of our attack, we limit the
work referenced in this section to the remaining closely related ones.

In a concurrent work with ours, a similar attack, PIROP [24], also uses partial
pointer overwrites to bypass leakage-resilient defenses. However, PIROP’s app-
roach is significantly different from ours in the following aspects. First, PIROP
is based on the concept of memory massaging, in which a carefully chosen set of
inputs causes the program to place code pointers on the stack. These are then
adjusted via partial pointer overwrites. This approach is probabilistic under fine-
grained randomization, with probability of success decreasing as the required
number of gadgets increases. RelROP attacks, conversely, are deterministic and
can scale to arbitrary payload sizes. Second, it is unclear how well PIROP attacks
generalize or could be automated. Each proof of concept exploit presented in that
work requires study and use of application-specific execution semantics. Rel-
ROP attacks only require knowledge of the target binary’s GOT. Third, PIROP
attacks are only able to bypass memory re-randomization defenses if they are
restricted to live pointers that are actively being tracked by the re-randomizer.
They cannot rely on stale pointers, such as those remaining from old stack frames
whose associated function has already returned. RelROP attacks bypass any vir-
tual memory re-randomization technique. Fourth, PIROP’s evaluation focuses
on the amount of entropy provided by various existing defenses. Since RelROP
attacks are deterministic, this does not apply to our technique. We instead ana-
lyze the tradeoffs between virtual and physical memory randomization, and their
implications for practical leakage-resilient defenses.

There are also a large number of randomization-based techniques proposed in
the literature that perform compile-time [28,29,33], load-time [17,26], or runtime
[27,37] randomization. It has been shown that information-leakage attacks of
various types, including direct memory disclosures [47], timing-based and fault-
based side-channel attacks [8,42], script-based leaks [45], indirect pointer leaks
[16], profiling attacks [41], and cache-based side-channel attacks [25], can be used
to bypass randomization-based defenses. Other orthogonal attacks against many
leakage-resilient defenses have also been studied, the details of which are beyond
our scope [6,9,16,20,40,41,45,46].

Control flow integrity (CFI) and all of its variants [10] are another class
of memory corruption defenses that are orthogonal to and not impacted by
RelROP. They are, however, vulnerable to attacks on the imprecisions of the
control flow graph [21].

10 Conclusion

In this paper, we analyzed the security and practicality of memory-
randomization mechanisms supporting leakage-resilient defenses. We illustrated
an attack, RelROP, that bypasses page-level or coarser virtual-memory random-
ization via partial overwriting of code pointers. We analyzed the prevalence of
RelROP gadgets in popular code bases, and built a proof-of-concept exploit

104 B. C. Ward et al.

against PHP 7.0.0. In addition, we enumerated the challenges associated with
practical deployment of physical-memory randomization defenses that arise from
protecting shared memory objects (e.g., shared libraries). Our findings indicate
that additional research is needed to design efficient and effective leakage-resilient
memory-protection techniques.

References

1. CVE-2015-8617. “Available from MITRE, CVE-ID CVE-2015-8617” (2015).
http://cve.mitre.org/cgi-bin/cvename.cgi’name=CVE-2015-8617

2. Threat LandScape Report Q2 2017. Fortinet (2017). https://www.fortinet.com/
content/dam /fortinet /assets/threat-reports/Fortinet- Threat-Report-Q2-2017.
pdf

3. OverclOk: rp++, April 2017. https://github.com/OverclOk/rp

4. Backes, M., Holz, T., Kollenda, B., Koppe, P., Niirnberger, S., Pewny, J.: You can
run but you can’t read: preventing disclosure exploits in executable code. In: ACM
Conference on Computer and Communications Security. CCS (2014)

5. Backes, M., Niirnberger, S.: Oxymoron: making fine-grained memory randomiza-
tion practical by allowing code sharing. In: 23rd USENIX Security Symposium.
USENIX Sec (2014)

6. Barresi, A., Razavi, K., Payer, M., Gross, T.R.: CAIN: silently breaking ASLR in
the cloud. In: 9th USENIX Security Symposium. WOOT 2015 (2015)

7. Bigelow, D., Hobson, T., Rudd, R., Streilein, W., Okhravi, H.: Timely rerandom-
ization for mitigating memory disclosures. In: ACM Conference on Computer and
Communications Security. CCS (2015)

8. Bittau, A., Belay, A., Mashtizadeh, A.J., Mazieres, D., Boneh, D.: Hacking blind.
In: 35th IEEE Symposium on Security and Privacy. S&P (2014)

9. Bosman, E., Razavi, K., Bos, H., Giuffrida, C.: Dedup est machina: Memory dedu-
plication as an advanced exploitation vector. In: 37th IEEE Symposium on Security
and Privacy (2016)

10. Burow, N., et al.: Control-flow integrity: precision, security, and performance. ACM
Comput. Surv. 50(1), 16:1-16:33 (2017)

11. Checkoway, S., Davi, L., Dmitrienko, A., Sadeghi, A., Shacham, H., Winandy, M.:
Return-oriented programming without returns. In: ACM Conference on Computer
and Communications Security. CCS (2010)

12. Chen, Y., Wang, Z., Whalley, D., Lu, L.: Remix: on-demand live randomization.
In: Proceedings of the Sixth ACM Conference on Data and Application Security
and Privacy, pp. 50-61. ACM (2016)

13. Cowan, C., Beattie, S., Johansen, J., Wagle, P.: Pointguard: protecting point-
ers from buffer overflow vulnerabilities. In: 12th USENIX Security Symposium.
USENIX Sec (2003)

14. Crane, S., et al.: Readactor: practical code randomization resilient to memory
disclosure. In: 36th IEEE Symposium on Security and Privacy. S&P (2015)

15. Crane, S., et al.: It’s a TRaP: table randomization and protection against function-
reuse attacks. In: ACM Conference on Computer and Communications Security.
CCS (2015)

16. Davi, L., Liebchen, C., Sadeghi, A.R., Snow, K.Z., Monrose, F.: Isomeron: code
randomization resilient to (Just-In-Time) return-oriented programming. In: 22nd
Annual Network and Distributed System Security Symposium. NDSS (2015)

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-8617
https://www.fortinet.com/content/dam/fortinet/assets/threat-reports/Fortinet-Threat-Report-Q2-2017.pdf
https://www.fortinet.com/content/dam/fortinet/assets/threat-reports/Fortinet-Threat-Report-Q2-2017.pdf
https://www.fortinet.com/content/dam/fortinet/assets/threat-reports/Fortinet-Threat-Report-Q2-2017.pdf
https://github.com/0vercl0k/rp

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

The Leakage-Resilience Dilemma 105

Davi, L.V., Dmitrienko, A., Niirnberger, S., Sadeghi, A.R.: Gadge me if you can:
secure and efficient ad-hoc instruction-level randomization for x86 and ARM. In:
ASTACCS, pp. 299-310 (2013)

De Sutter, B., Anckaert, B., Geiregat, J., Chanet, D., De Bosschere, K.: Instruction
set limitation in support of software diversity. In: Lee, P.J., Cheon, J.H. (eds.)
ICISC 2008. LNCS, vol. 5461, pp. 152-165. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-00730-9_10

Durden, T.: Bypassing PaX ASLR protection (2002). http://www.phrack.org/
issues.html?issue=59&id=9

Evans, 1., et al.: Missing the point(er): on the effectiveness of code pointer integrity.
In: 36th IEEE Symposium on Security and Privacy. S&P (2015)

Evans, 1., et al.: Control jujutsu: on the weaknesses of fine-grained control flow
integrity. In: ACM Conference on Computer and Communications Security. CCS
(2015)

Gionta, J., Enck, W., Ning, P.: HideM: protecting the contents of userspace memory
in the face of disclosure vulnerabilities. In: 5th ACM Conference on Data and
Application Security and Privacy. CODASPY (2015)

Giuffrida, C., Kuijsten, A., Tanenbaum, A.S.: Enhanced operating system security
through efficient and fine-grained address space randomization. In: 21st USENIX
Security Symposium. USENIX Sec (2012)

Goktas, E., et al.: Position-independent code reuse: on the effectiveness of ASLR
in the absence of information disclosure. In: IEEE EuroS&P (2018)

Gras, B., Razavi, K., Bosman, E., Bos, H., Giuffrida, C.: ASLR on the line: Prac-
tical cache attacks on the MMU. NDSS, February 2017 (2017)

Hiser, J., Nguyen, A; Co, M., Hall, M., Davidson, J.: ILR: Where’d my gadgets
go. In: 33rd IEEE Symposium on Security and Privacy. S&P (2012)

Homescu, A., Brunthaler, S., Larsen, P., Franz, M.: Librando: transparent code
randomization for just-in-time compilers. In: ACM Conference on Computer &
Communications security, pp. 993-1004 (2013)

Homescu, A., Neisius, S., Larsen, P., Brunthaler, S., Franz, M.: Profile-guided
automated software diversity. In: International Symposium on Code Generation
and Optimization (CGO), pp. 1-11. IEEE (2013)

Jackson, T., et al.: Compiler-generated software diversity. In: Moving Target
Defense. Advances in Information Security (2011)

Jackson, T., Homescu, A., Crane, S., Larsen, P., Brunthaler, S., Franz, M.: Diver-
sifying the software stack using randomized NOP insertion. In: Moving Target
Defense. Advances in Information Security (2013)

Kil, C., Jun, J., Bookholt, C., Xu, J., Ning, P.: Address space layout permuta-
tion (ASLP): towards fine-grained randomization of commodity software. In: 22nd
Annual Computer Security Applications Conference. ACSAC (2006)

Kim, N., Ward, B.C., Chisholm, M., Anderson, J.H., Smith, F.D.: Attacking the
one-out-of-m multicore problem by combining hardware management with mixed-
criticality provisioning. Real-Time Syst. 53(5), 709-759 (2017)

Koo, H., Chen, Y., Lu, L., Kemerlis, V.P., Polychronakis, M.: Compiler-assisted
code randomization. In: IEEE Symposium on Security & Privacy (SP) (2018)
Larsen, P., Homescu, A., Brunthaler, S., Franz, M.: SoK: automated software diver-
sity. In: 35th IEEE Symposium on Security and Privacy. S&P (2014)

Lu, K., Song, C., Lee, B., Chung, S.P., Kim, T., Lee, W.: ASLR-Guard: stopping
address space leakage for code reuse attacks. In: ACM Conference on Computer
and Communications Security. CCS (2015)

https://doi.org/10.1007/978-3-642-00730-9_10
https://doi.org/10.1007/978-3-642-00730-9_10
http://www.phrack.org/issues.html?issue=59&id=9
http://www.phrack.org/issues.html?issue=59&id=9

106

36.

37.

38.

39.
40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

B. C. Ward et al.

Morton, M., Koo, H., Li, F., Snow, K.Z., Polychronakis, M., Monrose, F.: Defeating
zombie gadgets by re-randomizing code upon disclosure. In: International Sympo-
sium on Engineering Secure Software and Systems, pp. 143—-160 (2017)

Novark, G., Berger, E.D.: Dieharder: securing the heap. In: ACM Conference on
Computer and Communications Security. CCS, pp. 573-584 (2010)

One, A.: Smashing the stack for fun and profit. Phrack Mag. 7, 14-16 (1996)
PaX: PaX address space layout randomization (2003)

Razavi, K., Gras, B., Bosman, E., Preneel, B., Giuffrida, C., Bos, H.: Flip feng shui:
hammering a needle in the software stack. In: 25th USENIX Security Symposium.
USENIX Sec (2016)

Rudd, R., et al.: Address-oblivious code reuse: on the effectiveness of leakage
resilient diversity. In: Proceedings of the Network and Distributed System Security
Symposium. NDSS 2017, February 2017

Seibert, J., Okhravi, H., Soderstrém, E.: Information leaks without memory dis-
closures: Remote side channel attacks on diversified code. In: ACM Conference on
Computer and Communications Security. CCS (2014)

Shacham, H.: The geometry of innocent flesh on the bone: return-into-libc without
function calls (on the x86). In: ACM Conference on Computer and Communications
Security. CCS (2007)

Shoshitaishvili, Y., et al.: SoK: (State of) the art of war: Offensive techniques in
binary analysis. In: IEEE Symposium on Security and Privacy (2016)

Snow, K.Z., Monrose, F., Davi, L., Dmitrienko, A., Liebchen, C., Sadeghi, A.:
Just-in-time code reuse: on the effectiveness of fine-grained address space layout
randomization. In: 34th IEEE Symposium on Security and Privacy. S&P (2013)
Snow, K.Z., Rogowski, R., Werner, J., Koo, H., Monrose, F., Polychronakis, M.:
Return to the zombie gadgets: undermining destructive code reads via code infer-
ence attacks. In: 37th IEEE Symposium on Security and Privacy (2016)

Strackx, R., Younan, Y., Philippaerts, P., Piessens, F., Lachmund, S., Walter, T.:
Breaking the memory secrecy assumption. In: 2nd European Workshop on System
Security. EUROSEC (2009)

Saito, T., Yokoyama, M., Sugawara, S., Suzaki, K.: Safe trans loader: mitigation
and prevention of memory corruption attacks for released binaries. In: Inomata,
A., Yasuda, K. (eds.) IWSEC 2018. LNCS, vol. 11049, pp. 68-83. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-97916-8_5

Szekeres, L., Payer, M., Wei, T., Song, D.: Sok: eternal war in memory. In: Pro-
ceedings of IEEE Symposium on Security and Privacy (2013)

Tang, A., Sethumadhavan, S., Stolfo, S.: Heisenbyte: thwarting memory disclo-
sure attacks using destructive code reads. In: ACM Conference on Computer and
Communications Security. CCS (2015)

Wartell, R., Mohan, V., Hamlen, K.W., Lin, Z.: Binary stirring: self-randomizing
instruction addresses of legacy x86 binary code. In: ACM Conference on Computer
and Communications Security. CCS (2012)

Werner, J., et al.: No-execute-after-read: preventing code disclosure in commodity
software. In: 11th ACM Symposium on Information, Computer and Communica-
tions Security. ASTACCS (2016)

Williams-King, D., et al.: Shuffler: fast and deployable continuous code re-
randomization. In: Proceedings of the 12th USENIX Conference on Operating
Systems Design and Implementation, pp. 367-382 (2016)

https://doi.org/10.1007/978-3-319-97916-8_5

	The Leakage-Resilience Dilemma
	1 Introduction
	2 Randomization Granularity
	2.1 Virtual-Memory Randomization
	2.2 Physical-Memory Randomization

	3 Threat Model
	4 Relative ROP Attacks
	4.1 Partial Pointer Overwriting
	4.2 RelROP Chaining

	5 RelROP Prevalence Analysis
	5.1 Analysis-Tool Architecture
	5.2 Analysis of Real-World Binaries

	6 Real-World Exploit
	6.1 Exploit Details

	7 Impact on Defenses
	7.1 Randomization-Focused Defenses
	7.2 Randomization-Dependent Leakage-Resilient Defenses

	8 Discussion
	8.1 Implications of Physical-Memory Randomization
	8.2 RELRO

	9 Related Work
	10 Conclusion
	References

