
LO-PHI: Low-Observable Physical Host
Instrumentation for Malware Analysis

Chad Spensky∗†, Hongyi Hu∗§ and Kevin Leach∗‡
∗MIT Lincoln Laboratory lophi@mit.edu

†University of California, Santa Barbara cspensky@cs.ucsb.edu
§Dropbox hongyihu@alum.mit.edu

‡University of Virginia kjl2y@virginia.edu

Abstract—Dynamic-analysis techniques have become the
linchpins of modern malware analysis. However, software-based
methods have been shown to expose numerous artifacts, which
can either be detected and subverted, or potentially interfere
with the analysis altogether, making their results untrustworthy.
The need for less-intrusive methods of analysis has led many
researchers to utilize introspection in place of instrumenting the
software itself. While most current introspection technologies
have focused on virtual-machine introspection, we present a novel
system, LO-PHI, which is capable of physical-machine introspec-
tion of both non-volatile and volatile memory, i.e., hard disk and
system memory. We demonstrate that we are able to provide anal-
ysis capabilities comparable to existing solutions, whilst exposing
zero software-based artifacts and minimal hardware artifacts. To
demonstrate the usefulness of our system, we have developed
a framework for performing automated binary analysis. We
employ this framework to analyze numerous potentially malicious
binaries using both traditional virtual-machine introspection and
our new hardware-based instrumentation. Our results show that
not only is our analysis on-par with existing software-based
counterparts, but that our physical instrumentation is capable
of successfully analyzing far more binaries, as it is not foiled by
popular anti-analysis techniques.

I. INTRODUCTION

With the rapid advancement of malware, the capabilities
of existing analysis techniques have become obsolete. Tools
that exist within the operating system or hypervisor are prone
to creating artifacts that are visible to the malicious code.
Malware authors can leverage these artifacts to conceal their
true intentions by halting execution or potentially subverting
the analysis technique all together. Even with clever designs,
there remains no proven technique for developing low-artifact
software-based analysis tools. Moreover, recent work by Kirat
et al. [44] showed that at least 5% of the malware analyzed in
their study employed anti-analysis techniques that successfully
evade most existing analysis tools. Subsequently, numerous
systems have been developed that attempt to detect and analyze
these environment-aware malware (e.g., [13], [49]). Chen et

al. [20] even provide a taxonomy of anti-analysis techniques
and mitigations commonly employed. However, no bullet-
proof solutions exist, and most existing solutions require
continuous updating as they rely on emulation frameworks.

To address these problems we present LO-PHI (Low-
Observable Physical Host Instrumentation), a novel system ca-
pable of analyzing software executing on commercial-off-the-
shelf (COTS) bare-metal machines, without the need for any
additional software on the machines. LO-PHI permits accurate
monitoring and analysis of live-running physical hosts in real-
time, with a minimal addition of “plug-and-play” components
to an otherwise unmodified system under test (SUT). We have
taken a two-pronged approach that is capable of instrument-
ing machines with actual hardware, to minimize artifacts, or
with traditional software-based techniques utilizing hardware
virtualization, to maximize scale. This permits the tradeoff
between transparency, scale, and cost when appropriate as well
as the potential for parallel analysis. Our architecture uses
physical hardware and software-based sensors to monitor a
SUT’s memory, network, and disk activity as well as actuate
its keyboard, mouse, and power. The raw data collected from
our sensors is then processed with modified open source tools,
i.e., Volatility [9] and Sleuthkit [18], to bridge the semantic
gap, i.e., convert raw data into human-readable, semantically
rich, output. Because LO-PHI is designed to collect raw low-
level data, it is both operating system and file system agnostic.
Our framework can be easily extended to support new or legacy
operating systems and file systems as long as the hardware tap
points are suitable for data acquisition.

LO-PHI also necessitated the development of novel in-
trospection techniques. While numerous techniques exist for
memory acquisition [19], [28], [72] of bare-metal systems,
passively monitoring disk activity has only recently begun
to be explored [50]. In this work we present a hardware
sensor capable of passively sniffing the disk activity of a live
machine while introducing minimal artifacts. Subsequently,
we have also developed the required modules for parsing
and reconstructing the underlying serial advanced technology
attachment (SATA) protocol. All of the source code for LO-
PHI is available under the Berkeley Software Distribution
(BSD) license at http://github.com/mit-ll/LO-PHI.

While the potential applications for LO-PHI are vast, we
focus on our ability to perform automated malware analysis on
physical machines, and demonstrate its usefulness by show-
casing the ability to analyze classes of malware that trivially

Permission to freely reproduce all or part of this paper for noncommercial
purposes is granted provided that copies bear this notice and the full citation
on the first page. Reproduction for commercial purposes is strictly prohibited
without the prior written consent of the Internet Society, the first-named author
(for reproduction of an entire paper only), and the author’s employer if the
paper was prepared within the scope of employment.
NDSS ’16, 21-24 February 2016, San Diego, CA, USA
Copyright 2016 Internet Society, ISBN 1-891562-41-X
http://dx.doi.org/10.14722/ndss.2016.23121

evade existing dynamic analysis techniques. We first briefly
summarize the current state of dynamic malware analysis to
better highlight our contributions in Section II. Next, we de-
scribe the design and implementation of our system, including
hardware sensors for memory and disk capture as well as
actuators for controlling and reverting a system under test
(SUT) in Section III. We then attempt to quantify the exposed
hardware artifacts of our system Section IV and some of our
inherent limitations in Section V. We discuss the design of our
automated binary analysis framework in Section VI and present
the findings from our analysis of various malware samples
in Section VII. Finally, we compare LO-PHI to other related
works in Section VIII and highlight areas that we feel are rich
for future work in Section IX.

In summary we claim to make the following contributions
to the field of dynamic analysis:

• Deployed and tested an extremely low-artifact,
hardware-based, dynamic analysis environment ca-
pable of analyzing malware that avoids traditional
software-based techniques

• Developed hardware capable of introspecting the com-
munication between SATA devices as well as asyn-
chronous memory acquisition

• Wrote a module capable of reconstructing SATA
frames into high-level disk sector operations

• Modified open-source forensics tools to reconstruct
file system and operating system states

• Constructed a framework, and accompanying infras-
tructure, for automating analysis of binaries on both
physical and virtual machines

• Demonstrated the scalability of our system to execute
and analyze thousands of samples with comparable
fidelity to traditional VM-based solutions

II. BACKGROUND AND THREAT MODEL

In this section, we introduce the vocabulary and basic
concepts surrounding the LO-PHI system as well as the scope
of our threat model.

a) Stealthy Malware: Recent malware detection and
analysis tools rely on virtualization, emulation, and debugging
tools. Unfortunately, these techniques are becoming obsolete
with the growing interest in stealthy malware. Malware is
stealthy if it makes an effort to hide its true behavior. This
stealth can emerge in several ways.

First, malware can simply remain inactive in the presence
of an analysis tool. Such malware will use a series of platform-
specific tests to determine if certain tools are in use. If no tools
are found, then the malware executes its malicious payload.

Second, malware may abort its host’s execution. For exam-
ple, a sample may attempt to execute an esoteric instruction
that is not properly emulated by the tool being used. In this
case, attempting to emulate the instruction may lead to raising
an unhandled exception, crashing the program.

Third, malware may simply disable defenses or tools
altogether. For instance, OllyDbg would crash when attempting

to emulate printf calls with a large number of ‘%s’ tokens.
This type of malware may also infect kernel space and then
disable defenses by abusing its elevated privilege level.

b) Artifacts: As mentioned above, stealthy malware
evades detection by concluding whether an analysis tool is
being used to watch its execution. This means that there must
be some piece of evidence available to the malware that it
uses to make this determination, commonly known as the
observer effect. This may be anything from execution time
(e.g., debuggers make programs run more slowly) to I/O device
names (e.g., if a device has a name with ‘VMWare’ in it), to
emulation idiosyncrasies (e.g., QEMU fails to set certain flags
when executing obscure corner-case instructions). We refer to
these bits of evidence as artifacts. LO-PHI seeks to make
instrumentation and measurement of malware more transparent
by reducing or eliminating the presence of these artifacts.

c) Malware Analysis: These stealth techniques have
necessitated the development of increasingly sophisticated
techniques to analyze them. For benign or non-stealthy bi-
naries, numerous debuggers exist such as OllyDbg, Immunity,
and gdb. These debuggers can be trivially detected in most
cases (e.g., by using the isDebuggerPresent() function).
These anti-analysis techniques led researchers to develop more
transparent, security-focused analysis frameworks using virtual
machines, which generally work by hooking system calls to
provide an execution trace which can then be analyzed [7],
[24], [25], [30], [64], [74]. System call interposition has its own
inherent problems [34] (e.g., performance overhead), which
led many researchers to decouple their analysis code even
further from the execution path. Virtual-machine introspection
(VMI) peeks at system state without any direct interaction
with the control flow of the program, thus mitigating much of
the performance overhead. VMI has prevailed as the dominant
low-artifact technique and has been used by numerous malware
analysis systems [26], [35], [38], [42], [47], [63], [65]. Jain et
al. [41] provide an excellent overview of this area of research.
However, introspection techniques have very limited access to
the semantic meaning of the data that they are acquiring, which
led to the development of numerous techniques for bridging
this semantic gap in both memory [9], [27], [33], [42], [48] and
disk [18], [45], [50] accesses. All VM-based techniques thus
far have nevertheless been shown to reveal some detectable
artifacts [20], [57], [59], [60] that could still be used to subvert
analysis [31], [57].

Because the techniques used to bridge the semantic gap
rely only on raw data and are in no way tied to the method
of acquisition, newer techniques further decouple the analysis
code from the SUT by moving the analysis portion into system
management mode (SMM) mode, an isolated execution mode
available on x86 processors, [10], [70], [72], [75] or onto
a separate processor altogether [12], [52], [53], [56], [76].
Similarly, our work fueled the development of an array of
methods for acquiring a system’s memory and disk state,
while introducing even fewer artifacts. In decreasing order of
artifacts, the most popular techniques for acquiring memory
use either specialized software [21], [62] or hardware to exploit
direct memory access (DMA) over FireWire [28], [51] or using
a peripheral component interconnect (PCI) card [19], [68].
Molina et al. [52] used a PCI card to obtain an out-of-band
method for accessing the hard disk. While a few techniques

2

have been proposed to defeat introspection and semantic-gap
based approaches [11], they tend to be very fragile in practice
and are not likely to be widely deployed. With LO-PHI,
we hope to help bridge the gap between these low-artifact
data acquisition methods and the semantically-rich emulated
analysis frameworks to provide similar output with far less
overhead.

d) Threat Model: While LO-PHI has an almost-
complete view of the SUT, and introduces very few artifacts,
we still make a few necessary assumptions about the malware
that we are analyzing. Specifically, we assume that the malware
can interact with the SUT without restriction, but that any
malicious modifications made to the system will be visible
either in main memory or on the disk drive. Malware capable
of infecting peripherals or other onboard chips are currently out
of scope for our system. Similarly, we assume that the malware
in question is not actively trying to thwart semantic-gap recon-
struction or avoid our particular hardware through signature-
based means. Finally, we assume that our instrumentation was
in place before the malicious code was executed, to ensure
that our exposed artifacts cannot be fingerprinted. That is, the
malware has no chance to analyze the SUT without LO-PHI in
place, and thus cannot distinguish our analysis system from a
system without our instrumentation. Otherwise, we assume that
malware may employ any exploitation, anti-analysis, or anti-
debugging techniques. More precisely, LO-PHI is specifically
designed to detect highly-sophisticated stealthy malware.

III. SYSTEM IMPLEMENTATION

LO-PHI leverages various sensors, actuators, and software
analysis tools combined into a simple and scalable framework.
For the purpose of our framework we generally define a
sensor as any data collection component (e.g., memory, disk,
or network) and an actuator as any component which provides
inputs for the system (e.g., power, keyboard, or mouse). Our
architecture allows for simple one-off experiments on a single
target SUT as well as much larger analyses running in parallel
on multiple SUTs. The hardware sensors support high-speed,
low-artifact collection of various data from a SUT, such
as memory or disk activity. Similarly, we employ hardware
actuators, which automatically drive a SUT to set up and run
experiments, as well as clean up afterwards. The software
analysis tools run on a separate analysis machine, capable of
aggregating and analyzing the collected data in real time.

In addition to the hardware, LO-PHI also supports tra-
ditional virtual-machine introspection using software-based
sensors and actuators within our framework. While the ma-
jor contribution of this paper is our hardware instrumen-
tation, much of our framework’s power stems from its
duality. We have implemented all of our capabilities in
both virtual and physical environments within the same ab-
stracted software interface written in Python. This permits
the development of tools that will seamlessly work in ei-
ther environment, physical or virtual, depending on their
instantiation. For example, analysis scripts need only im-
plement high-level functionality (e.g., memory_read(),
power_on(), disk_revert()), which our framework
will execute appropriately for the given machine type. Simi-
larly, we devised a scripting language for keyboard and mouse
actions, along with an appropriate parser for each instantiation.

A. Physical Instrumentation

While much work has been done in instrumenting and
introspecting virtual machines, we are only aware of a few
systems [43], [44], [73] that have had the goal of bare-metal
instrumentation. We feel that the lack of existing solutions
is likely due to a lack of motivation and the high barrier of
entry, i.e., it is more costly in both human effort and resources
to instrument physical machines. In this work, we hope to
highlight the usefulness of these techniques and advance the
state-of-the-art in malware analysis.

One of our major design goals was to create tools that
could be utilized on a wide range of existing commercial-
off-the-shelf (COTS) hardware with minimal modification.
While implementations with fewer artifacts are possible with
specialized hardware (e.g., memory interposers) or modifi-
cations of existing hardware (e.g., firmware modifications),
developing more robust sensors permits a wider range of
potential analyses and helps future-proof our techniques. For
these reasons, we chose to focus on two major sources of data
for our physical sensors: main memory and disk activity. In
particular, we employed Xilinx field-programmable gate array
(FPGA) boards to interface with both the peripheral component
interconnect express (PCIe) interface, for memory acquisition,
and the Serial ATA (SATA) interface, for disk introspection.
All of our sensors and actuators communicate over gigabit
Ethernet via the user datagram protocol (UDP).

1) Memory (Physical): Our memory sensor is implemented
on a Xilinx ML507 development board. This particular board
has single-lane PCIe connector, which we utilize as an end-
point to read the SUT’s memory using direct memory access
(DMA). We instantiate the card as a bus master by enabling
the Bus Master Enable bit in the card’s configuration register.
While each peripheral is designated a distinct memory region
for DMA, there were traditionally no enforcement mechanisms
to stop a peripheral from reading and writing arbitrary memory
locations. This method has been widely studied [19], [61], [72]
and exploited [8], [28], [29], [39], [46], [61], [67] over the
years. Subsequently, PCIe can achieve very rapid polling rates,
making it an ideal candidate for reliable memory acquisition.

2) Disk (Physical): We also employ the ML507 board for
our disk analysis by using its two onboard SATA connectors.
An Intelliprop SATA bridge core (Part number: IPP-SA110A-
BR) provides the ability to passively monitor, and potentially
manipulate, all of the traffic over the SATA interface between
the host and device. To receive this data on our remote analysis
host, we implemented the logic to package the SATA frames
into UDP packets and send them over the gigabit Ethernet
connection. This proved a difficult engineering feat, as the data
rates of SATA exceed the capacity of our gigabit Ethernet link,
and thus necessitated numerous data-flow integrity guarantees.
This interface is completely passive and is essentially invisible
to the SUT, aside from the occasional throttling of frames.

3) Actuation (Physical): For many of our intended applica-
tions, it is convenient, and sometimes necessary, to actuate the
SUT from our analysis scripts. For this purpose, we employ
the Arduino Leonardo, which is driven by a ATmega32u4.
It has numerous general-purpose input/ouput (GPIO) pins,
as well as the ability easily emulate a keyboard and mouse
through the universal serial bus (USB) interface. We use an

3

external power source for the Arduino to permit functions
such as powering on the SUT through the GPIO pins attached
to the SUT’s motherboard. Integrating the Leonardo into
our software framework was relatively straightforward, given
the simplistic development environment provided for Arduino
platforms. That said, correctly emulating mouse movements
required some additional effort. However, once implemented,
these mouse movements provide LO-PHI with the capability
to move the mouse as a human user would (e.g., continuously
move the mouse) and also click buttons presented by the
software. While numerous commercial solutions already exist
for some of this instrumentation (e.g., Intelligent Platform
Management Interface, Active Management Technology, Dell
Remote Access Card), we wanted to ensure that LO-PHI would
be usable on the widest-range of systems possible, and thus
opted for the lower-level interfaces, specifically USB.

4) Infrastructure (Physical): While our sensors and actua-
tors achieve all of our low-level requirements for instrumen-
tation, numerous actuation functions (e.g., reverting the disk
or checking the OS’s boot status) required the development
of specialized infrastructure. While reverting the disk for a
virtual machine is as easy as overwriting a file, reverting a
physical machine quickly becomes much more involved. Our
requirement of unmodified hardware eliminates options such
as network booting or specialized drives, which would also
produce significant detectable artifacts.

To achieve the desired outcome, we implemented our own
preboot execute environment (PXE) server as well as an
accompanying trivial file transfer protocol (TFTP) server, dy-
namic host configuration protocol (DHCP) server and domain
name service (DNS) server. This enables us to temporarily
permit a given media access control (MAC) address to boot a
Clonezilla [16] instance, which restores the disk to a previously
saved state. By doing this, we make our system more flexible
and scalable as the hardware is no longer tied to a particular
operating system or installation configuration. Similarly, by
hosting our own DNS and DHCP server, we are able to
simplify our scripts and create a richer atmosphere for malware
analysis (e.g., we can trivially lookup the IP of a given machine
since our infrastructure assigns it). We also use gigabit Netgear
GS108T switches, one per physical machine, and utilize virtual
local-area networks (VLANs) to ensure that our control and
sensor traffic do not interfere with each other.

B. Virtual Instrumentation

Since a great deal of work has already been done using
virtual-machine introspection (VMI), we choose to leverage
existing capabilities when possible by simply incorporating
them into our software framework with minimal amounts of
glue code. Because of our desire to use existing solutions,
and source code availability, we chose to use open-source
hypervisor implementations, namely QEMU/KVM [14], [37].

1) Memory (Virtual): For live memory acquisition, we use
techniques similar to those employed by LibVMI [55]. We
obtain access to the guest’s physical memory by means of a
UNIX socket. This socket then permits arbitrary memory read
and write commands, which perform the appropriate action on
the guest’s memory using cpu_physical_memory_map
and cpu_physical_memory_unmap.

2) Disk (Virtual): To incorporate disk introspection into our
virtual environment, we inserted hooks into the QEMU block
driver. These hooks intercept all disk operations and copy the
relevant data to a separate thread, which then exports them
over a UNIX socket to a subscription sever. By spawning a
new thread for every access, we should have negligible impact
on the system performance, especially if the host system has
underutilized resources. The server then allows our clients
to connect and subscribe to the disk activity of any guest.
We also ensured that our implementation works properly with
copy-on-write disks, greatly increasing performance when an
experiment requires frequently resetting the disk state.

3) Actuation (Virtual): For actuation, we leverage lib-
virt [2], an open-source tool for interacting with hypervisors.
Again, mouse movement proved to be less straightforward,
and necessitated the development of a custom virtual network
computing (VNC) client.

IV. ARTIFACTS

While hardware-level introspection provides numerous de-
sirable security guarantees that are not available for software-
based solutions (e.g., hardware segregation of analysis code),
it is still critically important to introduce minimal artifacts
and, in the ideal case, none at all. We emphasize that the
artifacts produced by LO-PHI are likely unusable by malware
for subversion, because the malware would lack a baseline for
comparison. Minimizing artifacts not only improves the fidelity
of our data and the performance of our system, but also reduces
the number of “tells” on a SUT that can be used to evade or
hinder our analysis. Nevertheless, we enumerate the artifacts
introduced by our instrumentation and attempt to address any
shortcomings in both virtual and physical machines. All of our
experiments were run using our infrastructure to automate the
execution of our benchmarking applications on both physical
and virtual machines both with and without instrumentation.
In our performance experiments, the physical SUT was a Dell
T7500 equipped with an 6-core Xeon X5670 and 2GB of RAM
and a WD3200AAKX disk drive, and our virtual machine was
instantiated on a Dell T7600 equipped with dual 8-core Xeon
E5-2665 processors and 68GB of RAM, with the VM itself
allocated one core, 1GB of RAM and a 10GB hard disk.

A. Memory Artifacts

In both of our memory-introspection techniques, i.e., phys-
ical and virtual, there is likely to be a performance impact
on the SUT, as we are accessing a shared resource (main
memory). We attempted to quantify this performance impact
by utilizing RAMSpeed, a popular RAM benchmarking ap-
plication. We ran RAMSpeed on the same system with and
without our instrumentation. In each case, we conducted four
experiments designed to stress each of the INT, MMX, SSE,
and FL-POINT instruction sets. Each of these experiments
consists of 500 sub-experiments, which evaluate and average
the performance of copy, scale, sum, and triad operations.
To ensure that the memory reads for our instrumentation
were not being cached, we had our sensors continuously read
the entire memory space, which should have also introduced
the largest performance impact on the system. The memory
polling rates were dictated by the hardware and our particular
implementation.

4

SSE MMX INTEGER FL-POINT
Memory Operation Type

4900

4950

5000

5050

5100

5150

M
em

or
y

Th
ro

ug
hp

ut
 (M

B/
se

c)

Uninstrumented With Instrumentation

(a) Physical machine (Polling at 14MB/sec)

SSE MMX INTEGER FL-POINT
Memory Operation Type

5000

6000

7000

8000

9000

10000

11000

M
em

or
y
Th
ro
ug
hp
ut
 (M

B/
se
c)

Uninstrumented With Instrumentation

(b) Virtual machine (Polling at 160MB/sec)

Fig. 1: Average memory throughput comparison as reported by RAMSpeed, with and without instrumentation on both physical and virtual
machines. (500 samples for each box plot)

At first glance, Figure 1 may seem to indicate that our in-
strumentation has a discernible effect on the system; however,
the deviation from the uninstrumented median is only 0.4%
in the worst case (SSE in Figure 1a). Despite our best efforts
to create a controlled experiment, i.e., running RAMSpeed on
a fresh install of Windows with no other processes, we were
unable to to definitively attribute any deviation to our polling
of memory. While our memory instrumentation certainly has
some impact on the system, the rates at which we are polling
memory do not appear to be frequent enough to predictably
degrade performance. This result appears to indicate that sys-
tems like ours could poll at significantly higher rates while still
remaining undetectable. For example, PCIe implementations
can achieve DMA read speeds of 3 GB/sec [6], which could
permit a new class entirely of introspection capabilities. To this
end, we have successfully achieved rates as fast as 60 MB/sec
using SLOTSCREAMER [32]; however, the implementation
is not yet stable enough to incorporate into our framework.
Nevertheless, in order to detect any deviation in performance,
the software being analyzed would need to have the ability to
baseline our system, which is not feasible in our experiments.

While performance concerns are a universal problem with
instrumentation, adding hardware to a physical configuration
has numerous additional artifacts that must also be addressed.
To utilize PCIe, we must enumerate our card on the bus,
which means that the BIOS and operating system are able to
see our hardware. This inevitably reveals our presence on the
machine; nevertheless, mitigations do exist (e.g., masquerading
as a different device). To avoid detection, our card could
trivially use a different hardware identifier every time to
avoid signature-based detection. Even with a masked hardware
identifier however, Stewin et al. [66] demonstrated that all
of these DMA-based approaches will reveal some artifacts
that are exposed in the CPU performance counters. Similar
techniques could be employed by malware authors in both
physical and virtual environments to detect the presence of
a polling-based memory acquisition system such as ours.
These anti-analysis techniques could necessitate the need for
more sophisticated acquisition techniques, some of which are
proposed in Section IX.

B. Disk Artifacts

To quantify the performance impact of our disk instru-
mentation, we similarly employed a popular disk benchmark-
ing utility, IOZone [1]. While IOZone’s primary purpose is
to benchmark the higher-level filesystem, any performance
impacts on disk throughput should nonetheless be visible to
the tool. We used the same setup as the previous memory
experiments and ran IOZone 50 times for each case, i.e., with
and without our instrumentation, monitoring the read and write
throughput with a record size of 16MB and file sizes ranging
from 16MB to 2GB (the total amount of RAM on SUT).

Our hardware should only be visible when we intentionally
delay SATA frames to meet the constraints of our gigabit
Ethernet link. We designed the system with this delay to
minimize our packet loss since UDP does not guarantee
delivery of packets. In practice, we rarely observed the system
cross this threshold; however, IOZone is explicitly made to
stress the limits of a file system. For smaller files, caching
masks most of our impact as these cache hits limit the
accesses that actually reach the disk. The caching effect is
more prevalent when looking at the raw data rates (e.g., the
median uninstrumented read rate was 2.2GB/sec for the 16MB
experiment and 46.2MB/sec for 2GB case).

The discrepancies between the read and write distributions
are attributed to the underlying New Technology File Sys-
tem (NTFS) and optimizations in the hard drive firmware.
Figure 2b shows that our instrumentation is essentially in-
distinguishable from the base case when reading, the worst
case being a degradation of 3.7% for 2GB files. With writes
however, where caching offers no benefit, the effects of our in-
strumentation are clearly visible, with a maximum performance
degradation of 14.5%. Under typical operating conditions,
throughputs that reveal our degradation are quite rare. In these
experiments, the UDP data rates observed from our sensor
averaged 2.4MB/sec with burst speeds reaching as high as
82.5MB/sec, which directly coincide with the rates observed in
Figure 2a, confirming that we are only visible when throttling
SATA to meet the constraints of the Ethernet connection.

In the case of virtual machines, we would expect to
have no detectable artifacts on a properly provisioned host

5

16 32 64 128 256 512 1024 2048
File Size (MB)

65

70

75

80

85

90

95

Di
sk
 T
hr
ou
gh
pu
t (
M
B/
se
c)

Uninstrumented With Instrumentation

(a) File writes

16 32 64 128 256 512 1024 2048
File Size (MB)

0

500

1000

1500

2000

2500

Di
sk
 T
hr
ou

gh
pu

t (
M
B/
se
c)

Uninstrumented With Instrumentation

(b) File reads

Fig. 2: File system throughput comparison as reported by IOZone on Windows XP, with and without instrumentation on a physical machine.
(50 samples for each box plot)

aside from the presence of a kernel virtual machine (KVM).
This is because our instrumentation adds very little code into
the execution path for disk accesses, and uses threading to
exploit the numerous cores on our system. More precisely, our
instrumentation only adds a memory copy operation of the
data buffer, which is then passed to a thread to be exported.
Our experimental results confirmed this hypothesis as we were
unable to identify any consistent artifacts in our IOZone tests.

V. LIMITATIONS

All of our techniques have some inherent limitations. We
attempt to enumerate the most prominent of those below.

a) Input/Output Memory Management Unit (IOMMU):
Newer chipsets are equipped with IOMMUs, which, when
properly configured to disable DMA from peripherals, would
render our current memory acquisition approach ineffective.
While this limits us from instrumenting arbitrary systems, it
does not thwart our approach in the analysis case, i.e., where
we have complete control of the system that we are instru-
menting, because we could simply disable this functionality
or purchase chipsets that do not contain IOMMUs. In the long
term however, we will likely have to migrate our techniques
to employ a different memory acquisition method.

b) Asynchronous Memory Access: Wang et al. [71]
provide a good analysis of the inherent limitations of polling-
based systems for malware detection and potential evasion
techniques. However, memory polling may also create issues
with smearing and caching as well. Smearing occurs when
the state of memory of a SUT changes during acquisition,
resulting in an imperfect memory capture over a time window
rather than a specific instant in time. The memory contents
of live SUTs are very dynamic, so smearing is likely to
occur. Nevertheless, we have only rarely had this effect cause
problems in practice, and faster polling rates would help
minimize the smearing effect. Similarly, there may be rare
cases where data never leaves a cache; however, this can be
easily mitigated with cache coherency.

c) Filesystem Caching: For disk monitoring, OS-level
disk caching may cause our disk sensor to miss SATA frames
that hit the cache and are overwritten before being flushed to

disk. While this effect is likely to be minor during continuous
disk monitoring, it is conceivable that malware could drop a
file, execute it, and delete it before the cache is ever flushed
to disk, completely evading detection. However, we do not see
this as a major issue, as attempts of persistence will eventually
have to write to disk. Additionally, the effects of the malware
would also likely be detectable in memory.

d) No Internet Access: Our experiments also had a
few limitations that were beyond our control. For example,
the network policies within our organization currently forbid
us from running these malware samples on the live Internet.
Similar studies have concluded that most malware from
the wild will appear to do nothing, aside from network
activity, without the presence of its command-and-control
infrastructure from which to retrieve a payload. Because
of this, we do not present our results as representative of
the presence of VM-aware malware in the wild, but instead
highlight our capabilities and the ability to detect particularly
sophisticated payloads once they are executed.

VI. EXPERIMENTAL FRAMEWORK

To facilitate experimentation, we built a scalable infrastruc-
ture capable of running arbitrary binaries on either a physical
or virtual machine with a specified operating system. Our
software infrastructure consists of a master which accepts job
submissions and delegates them to an appropriate controller.
A given controller is initialized with a set of machines,
both physical and virtual SUTs, that serve as its worker pool.
Upon a job submission, the controller first downloads the
script, which describes the actions to perform on the SUT,
and submits the job to a scheduler. This scheduler then waits
for a machine of the appropriate type, i.e., physical or
virtual, to become available in the pool, allocates it to the
analysis, and runs the requested routines. All of our malware
samples, analyses, and results were stored in a MongoDB
database. Samples were submitted using a custom FTP server
and a command line tool that interfaced with the master
to instantiate a given analysis script, which are stored on the
master and dynamically sent to the controller.

6

1 # R e s e t our d i s k u s i n g PXE
2 machine . m a c h i n e r e s e t ()
3 machine . power on ()
4 # Wait f o r OS t o appear on ne twork
5 whi le not machine . n e t w o r k g e t s t a t u s () :
6 t ime . s l e e p (1)
7 # Al low t i m e f o r OS t o c o n t i n u e l o a d i n g
8 t ime . s l e e p (OS BOOT WAIT)
9 # S t a r t d i s k c a p t u r e

10 d i s k t a p . s t a r t ()
11 # Send key p r e s s e s t o download b i n a r y
12 machine . k e y p r e s s s e n d (f t p s c r i p t)
13 # Dump memory (c l e a n)
14 machine . memory dump (m e m o r y f i l e c l e a n)
15 # S t a r t c o l l e c t i o n ne twork t r a f f i c
16 n e t w o r k t a p . s t a r t ()
17 # Get a l i s t o f c u r r e n t v i s i b l e b u t t o n s
18 b u t t o n c l i c k e r . u p d a t e b u t t o n s ()
19 # S t a r t our b i n a r y and c l i c k any b u t t o n s
20 machine . k e y p r e s s s e n d (’SPECIAL :RETURN’)
21 # Move our mouse t o i m i t a t e a human
22 machine . mouse wiggle (True)
23 # Al low b i n a r y t o e x e c u t e (I n i t i a l)
24 t ime . s l e e p (MALWARE START TIME)
25 # Dump memory (i n t e r i m)
26 machine . memory dump (m e m o r y f i l e i n t e r i m)
27 # Take a s c r e e n s h o t (B e f o r e c l i c k i n g b u t t o n s)
28 machine . s c r e e n s h o t (s c r e e n s h o t o n e)
29 # C l i c k any new b u t t o n s t h a t appeared
30 b u t t o n c l i c k e r . c l i c k b u t t o n s (new only=True)
31 # Al low b i n a r y t o e x e c u t e (3 min t o t a l)
32 t ime . s l e e p (MALWARE EXECUTION TIME−e l a p s e d t i m e)
33 # Take a f i n a l s c r e e n s h o t
34 machine . s c r e e n s h o t (s c r e e n s h o t t w o)
35 # Dump memory (D i r t y)
36 machine . memory dump (m e m o r y f i l e d i r t y)
37 # Shutdown Machine
38 machine . power shutdown ()

Fig. 3: Python script for running a malware sample and collecting the
appropriate raw data for analysis.

Because of the duality of our framework we were able
to write one simple script (see Figure 3) that will: 1) reset
our machine to a clean state, 2) take a memory image before
and after execution, 3) attempt to click any graphical buttons,
4) capture screenshots, and 5) capture all disk and network
activity throughout the execution. To download and execute an
arbitrary binary (Figure 3, line 12), our implementation uses
hotkeys to open a command line interface, executes a recursive
file-transfer protocol (FTP) download to retrieve the files to
be analyzed, and then runs a batch file to execute the binary.
From this data, we reconstruct the changes in system memory,
in addition to a complete capture of disk and network activity
generated by the binary. To identify any graphical buttons that
the malware may present, we use the Volatility “windows”
module to identify all visible windows that have an atom class
of 0xc061 or an atom superclass of 0xc017, which indicate
a button, and then use our actuator to move the mouse to
the appropriate location and click it. Our analysis framework
also attempts to remove any typical analysis-based artifacts by
using a random file name and continuously moving the mouse
during the execution of the binary. Similarly, when possible,
i.e., the system is not hung, we also properly shutdown the
system at the end of the analysis to force any cached disk
activity to be flushed.

In our analysis setup, both the physical and virtual envi-
ronments had a 10 GB partition for the operating system and
1 GB of volatile memory. The operating system was placed

0 2 4 6 8 10 12 14 16 18 20 22

Ph
ys
ic
al
 A
na
ly
si
s Disk Reset

OS Boot
OS Stabilize

Key Presses
Mem. (Clean)

Compress (Clean)
Buttons (Clean)

Binary Executed
Mem. (Interim)
Screenshot (Interim)
Buttons (Click)
Extra Sleep

Mem. (Dirty)
Screenshot (Final)

Compress (Dirty)
Shutdown
Store Results

0 1 2 3 4 5 6 7 8 9
Time Elapsed (Minutes)

Vi
rt
ua
l A

na
ly
si
s

Disk Reset
OS Boot

OS Stabilize
Key Presses

Mem. (Clean)
Compress (Clean)

Buttons (Clean)

Binary Executed
Mem. (Interim)
Screenshot (Interim)
Buttons (Click)

Extra Sleep
Mem. (Dirty)
Screenshot (Final)

Compress (Dirty)
Shutdown

Store Results

Fig. 4: Time spent in each step of binary analysis. Both environments
were booting a 10 GB Windows 7 (64-bit) hibernate image and were
running on a system with 1 GB of volatile memory.

into a “hibernate” state to minimize the variance between
executions and also reduce the time required to boot the
system. To minimize the space requirements of our system,
we compress our memory images before storing them in our
databases. While this adds a significant amount of time to our
analysis (approximately 2 minutes), it significantly reduces the
storage requirement. Finally, the virtual machine’s networks
were logically divided to ensure that samples did not interfere
with each other, and the physical environment consisted of
only one machine.

The respective runtimes for each portion of our analysis can
be seen in Figure 4. We ensured that every binary executed for
at least 3 minutes before retrieving our final memory image
and resetting the system. Screenshots were obtained using
Volatility’s screenshot module on physical machines and were
extracted from the captured memory images. Note that most of
the time taken in the physical case is due to our resetting of the
system state using Clonezilla, waiting for the system to boot,
and memory acquisition. The resetting and boot process could
be decreased significantly by writing a custom PXE loader, or
completely mitigated by implementing copy-on-write into our
FPGA. Similarly, the memory acquisition times could be more
comparable to the virtual case, if not faster, by optimizing our
PCIe implementation. Finally, system snapshots could reduce
the time spent setting up the environment to mere seconds.
While snapshots are trivial with virtual machines, it is still an
open problem for physical machines.

We note that LO-PHI may miss any temporal memory
modifications made by the binary between our clean and
dirty memory images. To analyze the transient behavior of
a binary, LO-PHI could be used to continuously poll the
systems memory during execution. However, while this has
the potential to produce a lot more fidelity, we do not feel
that our current polling rates are fast enough to warrant the
tradeoff between the produced DMA artifacts and usefulness
of the output. We hope to explore this area of research in
more detail in the future as we improve our memory capture
capabilities.

7

Raw SATA
Capture

Disk Reconstruction
(Custom Module)

File System Reconstruction
(PyTSK + Custom Code) Filter Noise FS Modifications

(a) Disk Reconstruction

Memory Image
(Clean)

Semantic Reconstruction
(Volatility) OS Information

Memory Image
(Dirty)

Semantic Reconstruction
(Volatility) OS Information

Extract
Differences Filter Noise Memory

Modifications

(b) Memory Reconstruction

Fig. 5: Binary analysis workflow. (Rounded nodes represent data and rectangles represent data manipulation.)

VII. EVALUATION AND ANALYSIS

In this section, we explain our methodology for seman-
tic gap reconstruction (Section VII-A) and demonstrate the
practicality of LO-PHI with three targeted experiments. The
experiments were constructed to demonstrate the following:

• The ability of LO-PHI to detect the behaviors
elicited by real malware, confirmed with ground truth
(Section VII-C)

• The ability to scale and extract meaningful results
from unknown malware samples (Section VII-D)

• The ability to analyze malware samples that employ
anti-analysis and evasion techniques (Section VII-E)

For each binary, we determine the system changes that
occurred during execution by forensically comparing the re-
sulting clean and dirty states. Each such pair of datasets
contains a clean and a dirty raw memory snapshot respectively
as well as a log of raw disk and network activity that occurred
between clean and dirty states. We exclude the network trace
analysis from much of our discussion since it is a well-known
technique and not the focus of our work. Our analysis of a
binary’s execution involves four steps: 1) bridging the semantic
gap for both the clean and dirty states, 2) computing the delta
between the two states, 3) filtering out actions that are not
attributed to the binary, and 4) comparing the delta for physical
execution and virtual execution to determine if the sample
employs VM-detection techniques (if applicable). The process
taken for each binary is illustrated Figure 5. When appropriate,
we also compare our results to those produce by Anubis [7]
and Cuckoo Sandbox [36].

A. Semantic Gap Reconstruction

As previously mentioned, before any analysis can be con-
ducted, we must first bridge the semantic gap, i.e., translate
our memory snapshots and SATA captures, which contain low-
level, raw, data into high-level, semantically-rich, information.

1) Memory: To extract operating-system-level modifica-
tions from our memory captures, we run a number of Volatility
plugins on both clean and dirty memory snapshots to parse
kernel structures and other objects. Some of the general
purpose plugins include psscan, ldrmodules, modscan, and
sockets, which extract the running processes, loaded dlls,
kernel drivers, and open sockets resident in memory. Similarly,
we also run more malware-focused plugins such as idt, gdt,

ssdt, svcscan, and callbacks which examine kernel descriptor
tables, registered services, and kernel callbacks.

2) Disk: The first step in our disk analysis is to first convert
the raw capture of the SATA activity into a 4-tuple containing
the disk operation (e.g., READ or WRITE), starting sector,
total number of sectors, and data. Our physical drives, as
with most modern drives, used an optimization in the SATA
specification known as Native Command Queuing (NCQ) [23].
NCQ reorders SATA Frame Information Structure (FIS) re-
quests to achieve better performance by reducing extraneous
head movement and then asynchronously replies based on
the optimal path. Thus, to reconstruct the disk activity, our
SATA reconstruction module must faithfully model the SATA
protocol in order to track and restore the semantic ordering of
FIS packets before translating them to disk operations. Upon
reconstructing the disk operations, these read/write transactions
are then translated into disk events (e.g., filesystem operations,
Master Boot Record modification, slack space modification)
using our analysis code which is built upon Sleuthkit and
PyTSK [22]. Since Sleuthkit only operates on static disk
images, our module required numerous modifications to keep
system state while processing a stream of disk operations.
Intuitively, we build a model of our SUT’s disk drive and
step through each read and write transaction, updating the
state at each iteration and reporting appropriately. This entire
process is visualized in Figure 5a. Unlike previous work [50],
which was designed for NTFS, our approach is generalizable
to any filesystem supported by Sleuthkit. A sample output from
creating the file LO-PHI.txt on the desktop can be seen below:

MFT modification (Sector: 6321319)
Filename /WINDOWS/. . . /drivetable.txt→/. . . /Desktop/New Text Document.txt
Allocated 0 → 1 Unallocated 1 → 0 Size 132 → 0
Modified 2014-11-07 20:07:06 (1406250) → 2015-02-19 15:47:17 (3281250)
Accessed 2014-11-07 20:07:06 (1406250) → 2015-02-19 15:47:17 (3281250)
Changed 2014-11-07 20:07:06 (1406250) → 2015-02-19 15:47:17 (3281250)
Created 2014-11-07 20:07:06 (1406250) → 2015-02-19 15:47:17 (3281250)

. . .
MFT modification (Sector: 6321319)

Filename /. . . /Desktop/New Text Document.txt →/. . . /Desktop/LO-PHI.txt
Changed 2015-02-19 15:47:17 (3281250) → 2015-02-19 15:47:25 (3437500)

Note that we can infer from this output that the filesystem
reused an old MFT entry for drivetable.txt and updated the
filename, allocation flags, size, and timestamps upon file
creation. A subsequent filename and timestamp update were
then observed once the new filename, LO-PHI.txt, was entered.

8

Offset Name PID PPID
0x86292438 AcroRd32.exe 1340 1048
0x86458818 AcroRd32.exe 1048 1008
0x86282be0 AdobeARM.exe 1480 1048
0x864562a0 $$ rk sketchy server.exe 1044 1008

(a) New Processes (pslist)

PID Port Protocol Address
1048 1038 UDP 127.0.0.1
1044 21 TCP 0.0.0.0

(b) New Sockets (sockets)

Selector Base Limit Type DPL Gr Pr
0x320 0x8003b6da 0x00000000 CallGate32 3 - P

(c) GDT Hooks (gdt)

Name Base Size File
hookssdt.sys 0xf7c5b000 0x1000 C: \. . .\lophi\hookssdt.sys

(d) Loaded Kernel Models (modscan)

Table Entry Index Address Name Module
0 0x0000f7 0xf7c5b406 NtSetValueKey hookssdt.sys
0 0x0000ad 0xf7c5b44c NtQuerySystemInformation hookssdt.sys
0 0x000091 0xf7c5b554 NtQueryDirectoryFile hookssdt.sys

(e) SSDT Hooks (ssdt)

Created Filename
/. . . /lophi/$$ rk sketchy server.exe
/. . . /lophi/hookssdt.sys
/. . . /lophi/sample 0742475e94904c41de1397af5c53dff8e.exe

(f) Disk Event Log (81 Entries Truncated)

Fig. 6: Post-filtered semantic output from rootkit experiment (Section VII-C1).

B. Filtering Background Noise

While the ability to provide a complete log of modifications
to the entire system is useful in its own right, it is likely more
relevant to extract only those events that are attributed to the
binary in question. To filter out the activity not attributed to
a sample’s execution, we first build a controlled baseline for
both our physical and virtual SUTs by creating a dataset (10
independent executions in our case) using a benign binary
(rundll32.exe with no arguments). We then use our analysis
framework to extract all of the system events for those trials
and created a filter based on the events that frequently occurred
in this benign dataset. Two of our memory analysis modules,
i.e., filescan and timers, had particularly high false positives
and proved less useful for our automated analysis. To reduce
false positives in our disk analysis, we decouple the filenames
from their respective master file table (MFT) record number.

C. Experiment 1: High-fidelity Output

To verify that LO-PHI is, in fact, capable of extracting be-
haviors of malware, we first evaluated our system with known
malware samples, for which we have ground truth. In our first
case study, we evaluated a rootkit that we developed utilizing
techniques from The Rootkit Arsenal [15] (Section VII-C1).
Similarly, we were able to obtain a set of 213 malware samples
that were constructed in a cleanroom environment, and were
accompanied by their source code with detailed annotations.
All the binaries in this experiment were executed on both
physical and virtual machines that were running Windows XP
(32bit, Service Pack 3) as their operating system.

1) Homemade Rootkit: Our rootkit stealths itself by adding
hooks to the Windows Global Descriptor Table (GDT) and
System Service Dispatch Table (SSDT) that will hide any
directory or running executable with the prefix $$ rk and then
opens a malicious FTP server. The rootkit module is embedded
inside a malicious PDF file that drops and loads a mali-
cious driver file (hookssdt.sys) and the FTP server executable
($$ rk sketchy server.exe). Figure 6 shows the complete post-
filtered results obtained when running this rootkit through our
framework. Note that we received identical results for both
virtual and physical machines, which exactly matches what
we would expect given our ground truth. We clearly see our
rootkit drop the files to disk (Figure 6f), load the kernel model

(Figure 6d), hook the kernel (Figure 6e and Figure 6c), and
then execute our FTP server (Figure 6a and Figure 6b). We
have omitted the creation of numerous temporary files by
Adobe Acrobat Reader and Windows as well as accesses to
existing files (81 total events) in Figure 6f to save space,
however all disk activity was successfully reconstructed. Note
that we can trivially detect the presence of the new process
as we are examining physical memory and are not foiled by
execution-level hooks.

We also ran our rootkit on the Anubis and Cuckoo analysis
frameworks. Anubis failed to execute the binary, likely due
to the lack of Acrobat Reader or some other dependencies.
Cuckoo produced an analysis with very similar file-system-
level output to ours, reporting 156 file events, compared to
our 81 post filtered. However, we were unable to find our
listening socket, or our GDT and SSDT hooks from analyzing
their output. While our FTP server was definitely executed,
and thus created a listening socket on port 21, it is possible
that our kernel module may not have executed properly on
their analysis framework. Nevertheless, we feel that our ability
to introspect memory to find these obvious tells of malware,
is a notable distinction. Subsequently, the lack of execution
for such a simple rootkit also emphasizes the importance of
having a realistic software environment as well as a hardware
environment. We attempt to address this issue for our analysis
in Section VII-E.

2) Labeled Malware: For the analysis of our 213 well-
annotated malware samples, we first performed a blind analy-
sis, and then later verified our findings with the labels. Note
that there were samples that exhibited more behaviors than
those listed here, only the most interesting findings are shown.

a) VM-detection: We found that 66 of these sam-
ples were labeled as employing either anti-VM or anti-
debugging capabilities. However, none of the 66 anti-VM sam-
ples performed QEMU-KVM detection; instead they focused
on VMWare, VirtualPC, and other virtualization suites. As
expected, all of the samples executed their full payload in both
our virtual and physical analysis environments.

b) New Processes: We found that 79 of the samples
created new long-running processes detected by our memory
analysis. The most commonly created process was named
svchost.exe, which occurred in 15 samples. In addition, 2

9

other samples had variations of svchost.exe, i.e., dddsvchost.exe
and cbasvchost.exe. These 17 samples dropped their own sv-
chost.exe binary to disk, which was detected by our filesystem
analysis, and executed the binary, which opened up a TCP
listening socket on port 1053. Port 1053 is associated with the
“Remote Assistance” service by the Internet Assigned Num-
bers Authority (IANA). The second most common process
was named bot.exe and occurred in 12 samples, and 4 of
these 12 samples also had the third most common process,
which was named dwwin.exe. The dwwin.exe binary claimed
to be Dr. Watson, a debugger included in Windows, but also
appeared to be injected with malicious code. The 4 samples
each created 2 UDP listening sockets on ports 1045 and 1046,
one owned by bot.exe and the other owned by dwwin.exe
respectively. We inferred from this behavior that these two
groups of samples were derived from the same two malware
families and contained remote administration tools (RATs),
which we confirmed with the ground truth labels.

We also found 3 samples that executed the SUT’s legiti-
mate firefox.exe browser, but loaded with a suspicious library
needful.dll that they dropped to disk. The firefox.exe process
opened TCP listening sockets on ports 1044 and 1045 in 2
of the 3 samples, suggesting that these samples were also
RATs attempting to masquerade as the Firefox browser. This
supposition was also confirmed by the ground truth data.

c) Data Exfiltration: We successfully detected 46 sam-
ples that attempted to collect and exfiltrate data through a com-
bination of our disk and memory analysis. We initially flagged
2 particular samples because they appeared to be exfiltrating
data over external IPs over port 25, which is reserved for
the Simple Mail Transfer Protocol (SMTP). Our disk analysis
of these samples showed a number of suspicious file reads,
including reads of Firefox’s cert8.db and key3.db for all user
profiles stored on the SUT. These files store user installed
certificates and saved passwords respectively, and there were
no Firefox processes running during the execution of those
samples. Searching for similar suspicious disk behavior in
the rest of the labeled set yielded 44 additional samples that
appeared to be exfiltrating data. Again, our detections correctly
matched the ground truth data.

d) Worms and Network Scanning: We detected approx-
imately 30 labeled samples having worm propagation and
network scanning behavior, which was also confirmed by
the ground truth data. These samples contacted a significant
number of IP addresses and opened up a large number of
network sockets in our five minute window. For example, 8 of
the samples contacted over 140 IP addresses, and 13 samples
opened more than 2000 sockets. The same 13 samples ap-
peared to target external IPs over port 135, which is associated
with Microsoft RPC, a service that has had remote exploitable
vulnerabilities targeted by worms in the past.

e) Command and Control (C2) and DNS: We detected
14 samples that attempted to contact external servers over TCP
port 6667, which is associated with the Internet Relay Chat
(IRC) protocol. IRC is also commonly used as a C2 mechanism
for remotely controlling malware, which was the case for these
samples as confirmed by the ground truth data. The most
common DNS queries were for the hostnames 579.info (55
samples), windowsupdate.net (16 samples), time.windows.com

(11 samples), wpad (11 samples), and google.com (10 sam-
ples). The ground truth data indicated that some of these
queries were intended as red herrings while other queries were
for actual contact with more suspicious hostnames such as
irc.site406.com, asdf.it, etc.

f) Kernel Modules: We detected 3 samples that un-
loaded the ipnat.sys driver and appeared to gain persistence
by replacing it with a malicious version.

D. Experiment 2: Unlabeled Malware

In this experiment, we demonstrate our framework’s ability
to scale and extract useful results from completely unknown
malicious binaries, which were obtained from the same source
as the labeled data and also said to target Windows XP. The
physical SUT was the same as described previously (Dell
T7500 with 1GB of RAM) but the virtual machines were
instantiated on a server with six quad-core Xeon X5670s
(24 logical cores) and 68GB of RAM. This enabled us to
instantiate a pool of 20 virtual machines with instrumentation.
Due the vast difference in runtimes and resources, we were
able to run far fewer samples in our physical environment. We
ran 1091 samples in both environments before running out
of available storage for our data on our development server.
We present the general types of behaviors detected by LO-
PHI in this section. Without ground truth data or manual
reverse engineering, we are unable to verify any strong claims
from our findings—however, we feel that the findings clearly
demonstrate the usefulness of our system. Basic statistics for
our analysis of these unlabled samples are shown in Table I.

TABLE I: Overall statistics for unlabeled malware (Section VII-D).

Observed Behavior Number of Samples

Created new process(es) 765
Opened socket(s) 210
Started service(s) 300
Loaded kernel modules 20
Modified GDT 58
Modified IDT 10

g) New Processes: A large majority (70%) of the wild
samples created new processes that persisted until the end of
our analysis. The most common names are shown in Table II.
Unsurprisingly, most of the malware appeared to either start
legitimate processes or masquerade as innocuously named
processes. We discovered 4 samples that started a process with
the same name as the currently logged in user. We found 11
samples created at least 10 new processes on the SUT, one of
which created an unusual 84 new processes.

TABLE II: Top processes created by wild malware (Section VII-D).

New Process Number of Samples

IEXPLORE.exe 31
dwwin.exe 30
svchost.exe 30
explorer.exe 14
urdvxc.exe 13
dfrgntfs.exe 13
wordpad.exe 12
defrag.exe 12

10

h) Sockets: About 19% of the wild samples opened at
least one network socket. The most commonly opened sockets
are shown in Table III. Three samples stood out as potential
worms or network scanners as they created over 1900 sockets;
the next highest sample created a mere 44 sockets. Unlike our
labeled set, none of the wild malware seemed to use obvious
C2 channel ports such as 6667 (IRC). For example, only one
sample sent traffic over port 80.

TABLE III: Top 6 sockets (by port and protocol) created by wild
malware (Section VII-D).

Port Protocol Number of Samples

1038 UDP 58
1039 TCP 42
1042 TCP 37
1038 TCP 36
1040 TCP 36
1041 TCP 32

i) Services: About 27.5% of the wild samples started
and installed at least one new system service. Most of these
services suspiciously claimed to be hardware drivers such as
USB or audio drivers. For example, over 250 samples loaded a
driver claiming to be hidusb.sys (for Human Interface Devices
over USB), possibly as an attempt to perform key logging.

E. Experiment 3: Evasive Malware

In this section, we exhibit LO-PHI’s ability to analyze
evasive malware, which thwart existing analysis frameworks.
Because we aim to analyze modern malware samples, we ran
these analyses on the same hardware, but with Windows 7 (64-
bit) as our operating system. Subsequently, we also installed
numerous potentially vulnerable and frequently targeted appli-
cations [5]. Specifically, Acrobat 9.4.01, Flash 10.1.85.3, Java
7u0 (64-bit), Firefox 38.0.1, Chrome 43.0.2357.64 (64-bit),
.NET 4.5.2, and Python 2.7 (64-bit). The analysis was done
exactly as described above. However, the Volatility modules
used were limited to those that supported Windows 7, from
which we selected the following to use in our analysis: psscan,
envars, ssdt, netscan, ldrmodules, driverirp, and psxview (See
Figure IV). It is worth noting that the ssdt and driverip modules
did not return any findings in our dataset.

1) Paranoid Fish: First, we highlight our ability to analyze
evasive binaries with a ground truth sample. We chose Paranoid
Fish (pafish v054) [54], a proof-of-concept open-source tool
that demonstrates various VM detection and anti-debugging
techniques used by actual malware. When pafish is executed,
it writes a file to disk for each artifact that it observes. Pafish
is currently able to detect most popular analysis frameworks.
For example, when run against Anubis [7], pafish dropped the
following files:

hi qemu
hi sandbox NumberOfProcessors less 2 GetSystemInfo
hi sandbox NumberOfProcessors less 2 raw
hi sandbox drive size
hi sandbox drive size2
hi sandbox mouse act
hi sandbox physicalmemory less 1Gb

1This was the last release before strict sandboxing.

Similarly, Cuckoo Sandbox had the following artifacts:

hi CPU VM rdtsc
hi CPU VM rdtsc force vm exit
hi sandbox mouse act
hi sandbox drive size
hi sandbox drive size2
hi hooks deletefile m1
hi virtualbox

On the contrary, when executed in our physical analysis
environment, the only artifacts that pafish detected were:

hi sandbox physicalmemory less 1Gb
hi sandbox drive size2

In this instance, we were using a 750 GB hard drive
with a 10 GB partition on it and 1 GB of physical memory.
These artifacts are very easily removed by simply adding more
hardware to the SUT. However, this will have a direct effect
on the time per sample in an automated environment, as a
larger disk image will have to be restored, and larger memory
snapshots will require more time and space. Nevertheless, LO-
PHI is able to analyzing pafish without detection.

2) Labeled Malware: To evaluate LO-PHI’s ability to an-
alyze real malware samples, we obtained a set of coarsely-
labeled evasive malware samples, generated by Kirat et al. [44]
in their previous work. Because these samples were specifically
labeled as evasive, we only present the findings from executing
them in our physical environment. While we had ground truth
that these samples employed evasion techniques, capable of
evading most popular analysis frameworks, we were not given
the intended effect or target operating system of the samples,
as we were with the samples in Section VII-C2. Similarly,
because of our aforementioned networking restriction, we ex-
pect that numerous samples will produce uninteresting behav-
ior without access their command-and-control infrastructure.
Thus, we are unable to make any definitive claims as to specific
intent of the malware. We present our aggregated findings
below, which indicate that our framework successfully avoided
their evasive behaviors. The dataset consisted of malware
labeled as using the evasion techniques outlined in Table V.
A summary of our findings is presented in Table VI.

TABLE IV: Description of Volatility modules used for evaluating
evasive malware.

psscan Enumerates processes using pool tag scanning. (Capable of
finding processes that have previously terminated (inactive)
and processes that have been hidden or unlinked)

envars Extracts environment variables from processes in memory.

ssdt Lists the functions in the Native and GUI SSDTs.

netscan Enumerates network sockets using pool tag scanning.

ldrmodules Enumerates modules in the Virtual Address Descriptor
(VAD) and cross-references them with three unique PEB
lists: InLoad, InInit, and InMem.

driverirp Enumerates all DRIVER OBJECT structures in memory

psxview Helps detect hidden processes by enumerating PsAc-
tiveProcessHead using the following methods: PsAc-
tiveProcessHead linked list, EPROCESS pool scanning,
ETHREAD pool scanning, PspCidTable, Csrss.exe handle
table, and Csrss.exe internal linked list.

11

TABLE V: Evasive malware dataset.

Technique Employed # Samples

Wait for keyboard 3
Bios-based 6
Hardware id-based 28
Processor feature-based 62
Exception-based 79
Timing-based 251

a) Wait for keyboard: Due to the small number of
samples employing this type of technique, we were not able to
draw any interesting conclusions from these samples, however
all of them appeared to execute successfully. One presented
an error dialog window that our framework was able to locate
and click, which appeared to kill the sample. This particular
sample also made a DNS query to goldcentre.ru. The
other two had no notable effects on our system.

b) BIOS-based: All of the examples in this category
appeared to trigger their payload. That is, they were unsuccess-
ful in detecting our analysis framework, and exhibited some
interesting behaviors. Every sample attempted to create an
output network connections to smtp.mail.ru. Two of them
attempted to determine their IP addresses using “whatismyip”
services. The samples also spawned new processes that per-
sisted throughout our analysis, most masquerading as existing
Windows services. The psxscan module indicated that the
processes 122.exe and 123.exe were spawned in two
cases, explorer.exe was also spawned by two of the
samples. Most interestingly, one of the samples created a
hidden svchost.exe which was invisible to every process
enumeration method except psscan.

c) Hardware-id-based: These samples also exhibited
interesting behaviors. Most notably, 23 of them started
TrustedInstaller.exe, while 25 of the original pro-
cesses continued running for the duration of our analysis,
and the others appeared to spawn new processes. All of the
samples also attempted to reach out to network resources:
24 of them attempted to connect to 219.235.1.127:80,
1 attempted to connect to 62.75.235.238:443, and 2
attempted TCP connections to either 8.8.8.8 or 8.8.4.4,
both Google-owned DNS servers, on port 53, which is the
DNS port for UDP communications. All of the samples
imported at least 32 modules, with the most active sample
importing 156 unique modules. Finally, 11 of them appeared
to present buttons that were detected and clicked by LO-PHI,
and 2 of them set particularly interesting environment variables
9Yy9Y9YYy9YYy and YYY9YYY9YYY99, which both had
the value of E4EC4E2160D8E128C919C56915BFED6C.

d) Processor feature-based: These samples produced
the least compelling findings. While most of them persisted,
or installed new processes, 11 had no new processes in
memory. Those that did spawn new processes had file-
names similar to before, with 4 of them once again load-
ing TrustedInstaller.exe, 3 starting a more stealthy
netsh.exe, 1 spawning a malicious taskhost.exe, and,
perhaps the least stealthy sample, launching trojan.exe.
Most of them also exhibited network activity, primarily
DNS traffic, with 8 of the samples querying a variation of

TABLE VI: Summary of anomalies detected in Volatility modules
and GUI buttons found in our evasive dataset when executed in our
physical environment on Windows 7 (64-bit).

Volatility Module

envars
nets

can
ldrm

odules

psxview
butto

ns

M
al

w
ar

e
L

ab
el Keyboard 0 3 1 0 1

Bios 3 6 6 6 0
Hardware 28 27 28 26 11
Processor 53 54 59 51 7
Exception 76 79 77 76 7

Timing 229 247 231 239 4

boxonline, and 7 of the samples attempting reach port
8 on various IP addresses. More interestingly, one of the
samples attempted to contact 219.235.1.127, and then opened
a local listening socket. A single sample in this set also set the
SEE_MASK_NOZONECHECKS environment variable to “1”,
which is a variable that will hide security warnings in Windows
XP. This leads us to believe that at least some of the malware
in this set was targeting an older version of windows, and
likely explains why some of the samples appeared to have no
effect. Two of samples also presented dialog boxes and the
button “OK” was clicked.

e) Exception-based: The exception-based malware
samples also exhibited similar behavior, with all but 3 of the
samples spawning new processes or continuing to execute for
the duration of our analysis. Unsurprisingly, many of these
samples also attempted to engage the network. There appeared
to be two distinct clusters that reached out to various domains
with the strings boxonline (31 samples) and backupdate
(26 samples), with the others calling out to unique domains.
The “boxonline” samples indicate that these may be the same
class of malware that was previously observed in the processor-
feature-based samples. Again, a few of the samples appeared
to present a graphical interface with the text “OK,” which was
successfully clicked.

f) Timing-based: This was our largest dataset, and thus
yielded the most diverse findings. Again, a majority of the
samples (193 out of 251) spawned new processes or persisted
throughout our analysis. The most interesting process names
being: skype.exe, which was launched by one process
and also hidden from normal windows process enumeration;
taskhost.exe, which was spawned in a hidden state by
22 processes and a less-stealthy manner by 10 other samples;
conhost.exe, which was also spawned in a stealthed state;
and one sample spawned facebook.exe. Once more, we
saw 4 samples set the SEE_MASK_NOZONECHECKS environ-
ment variable, indicating that Windows XP was likely their
intended target. This dataset also had a significant number of
samples (156) making boxonline DNS queries, and 5 of
the samples querying backupdate. None of these samples
produced network traffic aside from DNS.

While our analysis did not indicate malicious behavior in
all of the samples in this dataset, we were able to detect typical
malware behavior from a large majority. Some of findings
indicate that at least some of the samples were targeting
Windows XP, which could explain the lack of anomalies for

12

the few that appeared benign. Nevertheless, we feel that our
findings are more that sufficient to showcase LO-PHI’s ability
to analyze evasive malware, without being subverted, and sub-
sequently produce high-fidelity results for further analysis. In
fact, behaviors like unlinked EPROCESS entries and listening
sockets can be exceptionally difficult to detect with software-
based methodologies. Because LO-PHI has a complete view
of the entire memory space and disk activity, the ability for
the malware to hide its presence is greatly hindered.

VIII. RELATED WORK

VAMPiRE [69] is a software breakpoint framework run-
ning within the operating system. It runs in kernel mode,
meaning it is safe for debugging ring 3 (user mode) malware.
Rootkits can gain kernel-level privileges to circumvent VAM-
PiRE. However, as LO-PHI does not rely on the operating
system, it can be used to safely debug rootkits.

Ether [25] is a malware analysis framework based on
hardware virtualization extensions (e.g., Intel VT). It runs
outside of the guest operating systems, i.e., in the hypervisor,
by relying on underlying hardware features. BitBlaze [64] and
Anubis [7] are QEMU-based malware analysis systems. They
focus on understanding malware behavior, instead of achiev-
ing better transparency. V2E [74] combines both hardware
virtualization and software emulation. HyperDbg [30] uses
the hardware virtualization that allows the late launching of
VMX modes to install a virtual machine monitor, and run
the analysis code in the VMX root mode. SPIDER [24] uses
Extended Page Tables to implement invisible breakpoints and
hardware virtualization to hide its side-effects. Compared to
our system, Ether, BitBlaze, Anubis, V2E, HyperDbg and
SPIDER all rely on easily detected emulation or virtualization
technology [20], [57], [59], [60] and make the assumption
that virtualization or emulation is transparent from guest-OSes.
In contrast, LO-PHI provides memory access directly from
the PCI bus, greatly reducing the potential attack surface. In
addition, traditional debugging techniques often add varying
degrees of execution overhead. LO-PHI employs specialized
hardware that is fast enough to decrease visible timing artifacts
otherwise introduced by emulation.

BareBox [43] is a malware analysis framework based on
a bare-metal machine without any virtualization or emulation
techniques. However, it only targets the analysis of user-mode
malware, while LO-PHI can be used for debugging hypervi-
sor rootkits and kernel-mode device drivers. BareCloud [44]
is more similar to our approach, as it utilizes mostly un-
instrumented machines and executes the binaries with a small
software-based loader. Nevertheless, BareCloud requires a
network-based storage device and only has information about
the disk state before and after execution of the binary, whereas
we are able to reconstruction the entire stream of file-system
operations. Futhermore, BareCloud has no memory instrumen-
tation and presents numerous detectable artifacts (e.g., malware
loader software, networked-drive). Willems et al. [73] used
branch tracing to record all the branches taken by a program
execution. As pointed out in the paper, the data obtainable by
branch tracing is rather coarse, and this approach still suffers
from a CPU register attack against branch tracing settings.
However, LO-PHI provides fine-grained memory access over
the PCI bus, and is thus resistant to CPU register mutation.

Virt-ICE [58] is a remote debugging framework. It lever-
ages virtualization technology to debug malware in a VM and
communicates with a debugging client over a TCP connection.
However, since it uses a VM, a malware may refuse to unpack
itself in the VM. LO-PHI accesses the raw host memory
very rapidly, so we can transparently detect when this type
of execution occurs.

There is a vast array of popular debugging tools. For
instance, IDA Pro [40] and OllyDbg [3] are popular debuggers
running within the operating system that focus on ring 3
malware. DynamoRIO [17] is a process virtualization system
implemented using software code cache techniques. It executes
on top of the OS and allows users to build customized dynamic
instrumentation tools. Similar to LO-PHI, WinDbg [4] uses a
remote machine to connect to the target machine using serial
or network communications. However, these options require
special booting configuration or software running within the
operating system, which is easily detected by malware. LO-
PHI requires a PCI slot, but is intended to run on out-of-the-
box consumer hardware, where debugging facilities may not
be desirable.

IX. FUTURE WORK

We have identified numerous areas that we feel are critical
to eventually achieve a more transparent and robust framework.
As previously discussed, our current approach has numerous
limitations with smearing and incomplete views of the system
state. CPU debuggers could alleviate these pains by either
completely halting the system during memory acquisition or
simply providing more insight into the internal register values.
We have been experimenting with Intel’s eXtended Debug
Port (XDP) and ARM’s DSTREAM debugger and found
them to extremely powerful devices. Utilizing these hardware
debugging technologies in the context of malware analysis
could provide very high fidelity data while maintaining the
transparency that we require. We plan to explore these tech-
niques further and incorporate any useful developments into
our framework.

In this work, we limited our scope to the system-level
analysis that was provided by Volatility (e.g., process list,
services, sockets). While these modules are more than suf-
ficient for the experiments proposed in this paper, we feel
that expanding this scope and introspecting into an individual
process’s memory space to monitor process-level data (e.g.,
stack, heap, call trace) could prove invaluable when analyzing
advanced malware.

Since LO-PHI currently employs the lowest-level of in-
strumentation that we are aware of, we feel that continuing to
push this boundary is going to be critical for the analysis of
more sophisticated future malware. To this end, we feel that
our disk, memory, and CPU introspection capabilities positions
us well to begin investigating malware that attempts to infect
the BIOS or peripherals on a SUT for persistence and plan on
continuing to develop these capabilities.

X. CONCLUSION

We presented LO-PHI, a novel framework capable of
instrumenting physical and virtual machines without any soft-
ware on the system, using a set of sensors and actuators.

13

Furthermore, we developed a supporting framework capable
of automating dynamic analysis of arbitrary binaries by intro-
specting into the memory, disk, and network activity, recon-
structing the semantic operations that occurred, and outputting
them as concise events (e.g., process appeared, file written).
We show that the sensors used to collect the necessary data
produce minimal artifacts to any software running on the
machine (Section IV) and that our lack of artifacts enables
LO-PHI to analyze particularly sophisticated malware samples
with relative ease. As malware continues to advance and evade
detection, we expect hardware-based analysis frameworks to
become increasingly important. We believe this work exhibits
the usefulness of physical-machine introspection and instru-
mentation, as well as the value of forensic-based malware
analysis. We demonstrated that LO-PHI provides valuable
analytical capabilities that are unavailable using existing tools.
To this end, we hope to engage the community by open-
sourcing the project to help advance the state of the art in
malware analysis.

ACKNOWLEDGMENT

We would like to thank Brendon Chetwynd for his hard-
ware development efforts and general guidance; Charles V.
Wright for his invaluable mentorship, insights, and leadership
in the early phases of this work; Joshua Hodosh and Ryan
Whelan for their contributions to our memory introspection ca-
pabilities and early proofs-of-concept; and finally Lee Rossey,
Doug Stetson, and John Wilkinson for their oversight and
support throughout.

This work was sponsored by the Assistance Secretary
of Defense for Research and Engineering under Air Force
Contract #FA8721-05-C-0002. Opinions, interpretations, con-
clusions and recommendations are those of the authors and are
not necessarily endorsed by the United States Government.

REFERENCES

[1] “Iozone filesystem benchmark,” http://www.iozone.org/.
[2] “libvirt: The Virtualization API,” http://libvirt.org/.
[3] “OllyDbg,” www.ollydbg.de.
[4] “Windbg,” www.windbg.org.
[5] “An overview of exploit packs,” http://contagiodump.blogspot.com/2010/

06/overview-of-exploit-packs-update.html, May 2015.
[6] Altera Corporation, “PCI Express High Performance Reference De-

sign,” http://www.altera.com/literature/an/an456.pdf, October 2015.
[7] Anubis, “Analyzing Unknown Binaries,” http://anubis.iseclab.org.
[8] D. Aumaitre and C. Devine, “Subverting windows 7 x64 kernel with

dma attacks,” HITBSecConf 2010 Amsterdam, vol. 29, 2010.
[9] M. Auty, A. Case, M. Cohen, B. Dolan-Gavitt, M. H. Ligh, J. Levy, and

A. Walters, “Volatility Framework - Volatile memory extraction utility
framework,” http://www.volatilityfoundation.org/.

[10] A. M. Azab, P. Ning, Z. Wang, X. Jiang, X. Zhang, and N. C. Skalsky,
“Hypersentry: enabling stealthy in-context measurement of hypervisor
integrity,” in Proceedings of the 17th ACM conference on Computer
and communications security (CCS). ACM, 2010, pp. 38–49.

[11] S. Bahram, X. Jiang, Z. Wang, M. Grace, J. Li, D. Srinivasan, J. Rhee,
and D. Xu, “Dksm: Subverting virtual machine introspection for fun and
profit,” in Proceedings of the 29th Symposium on Reliable Distributed
Systems (SRDS). IEEE, 2010, pp. 82–91.

[12] A. Baliga, V. Ganapathy, and L. Iftode, “Automatic inference and
enforcement of kernel data structure invariants,” in Proceedings of
the 24th Annual Computer Security Applications Conference (ACSAC).
IEEE, 2008, pp. 77–86.

[13] D. Balzarotti, M. Cova, C. Karlberger, E. Kirda, C. Kruegel, and
G. Vigna, “Efficient detection of split personalities in malware.” in In
Proceedings of the 17th Annual Network & Distributed System Security
Conference (NDSS). The Internet Society, 2010.

[14] F. Bellard, “Qemu, a fast and portable dynamic translator.” in USENIX
Annual Technical Conference, FREENIX Track, 2005, pp. 41–46.

[15] B. Blunden, The Rootkit Arsenal, 2nd ed. Jones and Barlett Learning,
2013.

[16] J. Bowling, “Clonezilla: build, clone, repeat,” Linux journal, vol. 2011,
no. 201, p. 6, 2011.

[17] D. Bruening, Q. Zhao, and S. Amarasinghe, “Transparent Dynamic
Instrumentation,” in Proceedings of the 8th Conference on Virtual
Execution Environments (VEE). ACM SIGPLAN/SIGOPS, 2012.

[18] B. Carrier, “The Sleuth Kit,” http://www.sleuthkit.org/.
[19] B. D. Carrier and J. Grand, “A hardware-based memory acquisition

procedure for digital investigations,” Digital Investigation, vol. 1, no. 1,
pp. 50–60, 2004.

[20] X. Chen, J. Andersen, Z. M. Mao, M. Bailey, and J. Nazario, “Towards
an understanding of anti-virtualization and anti-debugging behavior in
modern malware,” in Proceedings of the 38th annual International
Conference on Dependable Systems and Networks (DSN). IEEE, 2008,
pp. 177–186.

[21] M. Cohen, D. Bilby, and G. Caronni, “Distributed forensics and incident
response in the enterprise,” Digital Investigation, vol. 8, pp. S101–S110,
2011.

[22] M. Cohen and J. Metz, “PyTSK,” https://github.com/py4n6/pytsk.
[23] B. Dees, “Native command queuing-advanced performance in desktop

storage,” Potentials, IEEE, vol. 24, no. 4, pp. 4–7, 2005.
[24] Z. Deng, X. Zhang, and D. Xu, “SPIDER: Stealthy Binary Program

Instrumentation and Debugging Via Hardware Virtualization,” in Pro-
ceedings of the 29th Annual Computer Security Applications Conference
(ACSAC). ACM, 2013, pp. 289–298.

[25] A. Dinaburg, P. Royal, M. Sharif, and W. Lee, “Ether: Malware Analysis
via Hardware Virtualization Extensions,” in Proceedings of the 15th
Annual Conference on Computer and Communications Security (CCS).
ACM, 2008.

[26] B. Dolan-Gavitt, T. Leek, J. Hodosh, and W. Lee, “Tappan zee (north)
bridge: mining memory accesses for introspection,” in Proceedings of
the 20th conference on Computer and communications security (CCS).
ACM, 2013, pp. 839–850.

[27] B. Dolan-Gavitt, T. Leek, M. Zhivich, J. Giffin, and W. Lee, “Virtuoso:
Narrowing the semantic gap in virtual machine introspection,” in
Proceedings of the 32nd Symposium on Security and Privacy (Oakland).
IEEE, 2011, pp. 297–312.

[28] M. Dornseif, “0wned by an ipod,” Presentation, PacSec, 2004.
[29] L. Duflot, Y.-A. Perez, G. Valadon, and O. Levillain, “Can you still

trust your network card,” CanSecWest/core10, pp. 24–26, 2010.
[30] A. Fattori, R. Paleari, L. Martignoni, and M. Monga, “Dynamic and

Transparent Analysis of Commodity Production Systems,” in Pro-
ceedings of the 25th International Conference on Automated Software
Engineering (ASE’10). IEEE/ACM, 2010.

[31] P. Ferrie, “Attacks on more virtual machine emulators,” Symantec
Technology Exchange, 2007.

[32] J. FitzPatrick and M. Crabill, “NSA Playset: PCIe,” in DEF CON 22,
2014.

[33] Y. Fu and Z. Lin, “Space traveling across vm: Automatically bridging
the semantic gap in virtual machine introspection via online kernel
data redirection,” in In Proceedings of the 33rd Annual Symposium on
Security and Privacy (Oakland). IEEE, 2012, pp. 586–600.

[34] T. Garfinkel, “Traps and pitfalls: Practical problems in system call
interposition based security tools.” in In Proceedings of the 10th Annual
Network and Distributed System Security Symposium (NDSS), vol. 3.
The Internet Society, 2003, pp. 163–176.

[35] T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, and D. Boneh, “Terra: A
virtual machine-based platform for trusted computing,” ACM SIGOPS
Operating Systems Review, vol. 37, no. 5, pp. 193–206, 2003.

[36] C. Guarnieri, A. Tanasi, J. Bremer, and M. Schloesser, “The cuckoo
sandbox: Automated malware analysis,” www.cuckoosandbox.org/.

14

[37] I. Habib, “Virtualization with kvm,” Linux Journal, vol. 2008, no. 166,
p. 8, 2008.

[38] B. Hay and K. Nance, “Forensics examination of volatile system data
using virtual introspection,” ACM SIGOPS Operating Systems Review,
vol. 42, no. 3, pp. 74–82, 2008.

[39] J. Heasman, “Implementing and detecting a pci rootkit,” Retrieved
February, vol. 20, no. 2007, p. 3, 2006.

[40] IDA Pro, www.hex-rays.com/products/ida/.
[41] B. Jain, M. B. Baig, D. Zhang, D. E. Porter, and R. Sion, “Sok:

Introspections on trust and the semantic gap,” in Proceedings of the
35th Symposium on Security and Privacy (Oakland). IEEE, 2014, pp.
605–620.

[42] X. Jiang, X. Wang, and D. Xu, “Stealthy malware detection through
vmm-based out-of-the-box semantic view reconstruction,” in Proceed-
ings of the 14th ACM conference on Computer and communications
security (CCS). ACM, 2007, pp. 128–138.

[43] D. Kirat, G. Vigna, and C. Kruegel, “BareBox: Efficient Malware
Analysis on Bare-metal,” in Proceedings of the 27th Annual Computer
Security Applications Conference (ACSAC). ACM, 2011.

[44] D. Kirat, G. Vigna, and C. Kruegel, “Barecloud: bare-metal analysis-
based evasive malware detection,” in Proceedings of the 23rd USENIX
conference on Security Symposium (SEC’14). USENIX Association,
Berkeley, CA, USA, 2014, pp. 287–301.

[45] S. Krishnan, K. Z. Snow, and F. Monrose, “Trail of bytes: efficient sup-
port for forensic analysis,” in Proceedings of the 17th ACM conference
on Computer and communications security (CCS). ACM, 2010, pp.
50–60.

[46] E. Ladakis, L. Koromilas, G. Vasiliadis, M. Polychronakis, and S. Ioan-
nidis, “You can type, but you can’t hide: A stealthy gpu-based keylog-
ger,” in Proceedings of the 6th European Workshop on System Security
(EuroSec), 2013.

[47] T. K. Lengyel, J. Neumann, S. Maresca, B. D. Payne, and A. Kiayias,
“Virtual machine introspection in a hybrid honeypot architecture.” in In
Proceedings of the 5th Workshop on Cyber Security Experimentation
and Test (CSET). USENIX, 2012.

[48] Z. Lin, J. Rhee, C. Wu, X. Zhang, and D. Xu, “Dimsum: Discovering
semantic data of interest from un-mappable memory with confidence,”
in Proceedings of the 19th Annual Network and Distributed System
Security Symposium (NDSS). The Internet Society, 2012.

[49] M. Lindorfer, C. Kolbitsch, and P. M. Comparetti, “Detecting
environment-sensitive malware,” in Proceedings of the 14 Interna-
tional Symposium on Recent Advances in Intrusion Detection (RAID).
Springer, 2011, pp. 338–357.

[50] J. Mankin and D. Kaeli, “Dione: a flexible disk monitoring and analysis
framework,” in Proceedings of the 15th International Symposium on
Research in Attacks, Intrusions, and Defenses (RAID). Springer, 2012,
pp. 127–146.

[51] A. Martin, “Firewire memory dump of a windows xp computer: a
forensic approach,” Black Hat DC, 2007.

[52] J. Molina and W. Arbaugh, “Using independent auditors as intrusion
detection systems,” in In Proceedings of the 4th International Confer-
ence on Information and Communications Security (ICICS). Springer,
2002, pp. 291–302.

[53] H. Moon, H. Lee, J. Lee, K. Kim, Y. Paek, and B. B. Kang, “Vigilare:
toward snoop-based kernel integrity monitor,” in Proceedings of the
2012 ACM conference on Computer and communications security.
ACM, 2012, pp. 28–37.

[54] A. Ortega, “Paranoid fish,” http://github.com/a0rtega/pafish.
[55] B. D. Payne, “Libvmi: Simplified virtual machine introspection,” https:

//github.com/bdpayne/libvmi.
[56] N. L. Petroni Jr, T. Fraser, J. Molina, and W. A. Arbaugh, “Copilot-a

coprocessor-based kernel runtime integrity monitor.” in In Proceedings
of the 13 Security Symposium (SEC). USENIX, 2004, pp. 179–194.

[57] D. Quist and V. Smith, “Detecting the presence of virtual machines
using the local data table,” Offensive Computing, 2006.

[58] N. A. Quynh and K. Suzaki, “Virt-ICE: Next-generation Debugger for
Malware Analysis,” in Black Hat USA, 2010.

[59] T. Raffetseder, C. Kruegel, and E. Kirda, “Detecting System Emulators,”
in Information Security. Springer, 2007.

[60] J. Rutkowska, “Red Pill,” http://www.ouah.org/Red Pill.html.

[61] J. Rutkowska, “Beyond the cpu: Defeating hardware based ram acqui-
sition,” Proceedings of BlackHat DC 2007, 2007.

[62] B. Schatz, “Bodysnatcher: Towards reliable volatile memory acquisition
by software,” Digital Investigation, vol. 4, pp. 126–134, 2007.

[63] K. Z. Snow, S. Krishnan, F. Monrose, and N. Provos, “SHELLOS:
Enabling Fast Detection and Forensic Analysis of Code Injection
Attacks,” in In Proceedings of the 20th Security Symposium (SEC).
USENIX, 2011.

[64] D. Song, D. Brumley, H. Yin, J. Caballero, I. Jager, M. G. Kang,
Z. Liang, J. Newsome, P. Poosankam, and P. Saxena, “BitBlaze: A New
Approach to Computer Security via Binary Analysis,” in Proceedings
of the 4th International Conference on Information Systems Security
(ICISS). Springer, 2008.

[65] D. Srinivasan, Z. Wang, X. Jiang, and D. Xu, “Process out-grafting:
an efficient out-of-vm approach for fine-grained process execution
monitoring,” in Proceedings of the 18th ACM conference on Computer
and communications security (CCS). ACM, 2011, pp. 363–374.

[66] P. Stewin, “A primitive for revealing stealthy peripheral-based attacks
on the computing platform’s main memory,” in Proceedings of the
13th International Symposium on Research in Attacks, Intrusions, and
Defenses (RAID). Springer, 2013, pp. 1–20.

[67] P. Stewin and I. Bystrov, “Understanding dma malware,” in In Proceed-
ings of the 10th Conference on Detection of Intrusions and Malware,
and Vulnerability Assessment (DIMVA). Springer, 2013, pp. 21–41.

[68] J. Stüttgen and M. Cohen, “Anti-forensic resilient memory acquisition,”
Digital Investigation, vol. 10, pp. S105–S115, 2013.

[69] A. Vasudevan and R. Yerraballi, “Stealth Breakpoints,” in Proceedings
of the 21st Annual Computer Security Applications Conference (AC-
SAC’05), 2005.

[70] J. Wang, A. Stavrou, and A. Ghosh, “Hypercheck: A hardware-assisted
integrity monitor,” in In Proceedings of the 13th International Sympo-
sium on Recent Advances in Intrusion Detection (RAID). Springer,
2010, pp. 158–177.

[71] J. Wang, K. Sun, and A. Stavrou, “A dependability analysis of hardware-
assisted polling integrity checking systems,” in In Proceedings of the
42nd Annual International Conference on Dependable Systems and
Networks (DSN). IEEE, 2012, pp. 1–12.

[72] J. Wang, F. Zhang, K. Sun, and A. Stavrou, “Firmware-assisted memory
acquisition and analysis tools for digital forensics,” in In Proceedings
of the 6th International Workshop on Systematic Approaches to Digital
Forensic Engineering (SADFE). IEEE, 2011, pp. 1–5.

[73] C. Willems, R. Hund, A. Fobian, D. Felsch, T. Holz, and A. Vasudevan,
“Down to the bare metal: Using processor features for binary analysis,”
in Proceedings of the 28th Annual Computer Security Applications
Conference (ACSAC). ACM, 2012, pp. 189–198.

[74] L.-K. Yan, M. Jayachandra, M. Zhang, and H. Yin, “V2E: Combining
Hardware Virtualization and Software Emulation for Transparent
and Extensible Malware Analysis,” in Proceedings of the 8th
SIGPLAN/SIGOPS Conference on Virtual Execution Environments
(VEE). ACM, 2012. [Online]. Available: http://doi.acm.org/10.1145/
2151024.2151053

[75] F. Zhang, K. Leach, K. Sun, and A. Stavrou, “Spectre: A dependable
introspection framework via system management mode,” in Dependable
Systems and Networks (DSN), 2013 43rd Annual IEEE/IFIP Interna-
tional Conference on. IEEE, 2013, pp. 1–12.

[76] X. Zhang, L. van Doorn, T. Jaeger, R. Perez, and R. Sailer, “Secure
coprocessor-based intrusion detection,” in Proceedings of the 10th
workshop on ACM SIGOPS European workshop. ACM, 2002, pp.
239–242.

15

