
Evolutionary Computation for Improving Malware Analysis
Kevin Leach1, Ryan Dougherty2, Chad Spensky3, Stephanie Forrest2, and Westley Weimer1

kjleach@umich.edu,redoughe@asu.edu,cspensky@cs.ucsb.edu,stephanie.forrest@asu.edu,weimerw@umich.edu
1University of Michigan, 2Arizona State University, 3University of California, Santa Barbara

ABSTRACT
Research in genetic improvement (GI) conventionally focuses on the
improvement of software, including the automated repair of bugs
and vulnerabilities as well as the refinement of software to increase
performance. Eliminating or reducing vulnerabilities using GI has
improved the security of benign software, but the growing volume
and complexity of malicious software necessitates better analysis
techniques that may benefit from a GI-based approach. Rather than
focus on the use of GI to improve individual software artifacts, we
believe GI can be applied to the tools used to analyze malicious code
for its behavior. First, malware analysis is critical to understanding
the damage caused by an attacker, which GI-based bug repair does
not currently address. Second, modern malware samples leverage
complex vectors for infection that cannot currently be addressed by
GI. In this paper, we discuss an application of genetic improvement
to the realm of automated malware analysis through the use of
variable-strength covering arrays.

1 INTRODUCTION
Malicious software (malware) has proliferated in the past few years,
significantly eroding user and corporate privacy and trust in com-
puter systems [6, 11]. A combination of manual and automated anal-
yses are required for understanding new malware samples [4, 12].
Unfortunately, a growing number of new malware samples em-
ploy evasive or stealthy techniques to avoid or subvert automated
analysis [2, 9, 10]. These stealthy samples operate by detecting
features or artifacts of the analysis environment in which it ex-
ecutes (e.g., virtual machines may expose virtual devices named
“VMWare Hard Disk” or may not fully implement all CPU instruc-
tions [13, Table V]; malware may check for mouse movement or
keystrokes during execution [9]). When a sample detects an artifact,
the malware can decide not to execute, thus hiding its behavior
from a well-intentioned analyst or automated analysis tool. These
stealthy samples require additional steps, effort, and computational
resources to mitigate the presence of artifacts so that stealthy sam-
ples cannot determine whether they are under analysis. As millions
of new samples are created each year [6], and manual analysis effort
is burdensome, higher-throughput automated analysis solutions
are needed. Given the cost (e.g., runtime overhead, implementation
time, etc.) associated with artifact mitigation, there is an opportu-
nity to improve analysis efficiency by determining which artifacts
should be mitigated in which combinations to maximize success
against a large corpus of such stealthy malware.

We propose extending state-of-the-art automated malware anal-
ysis techniques with a consideration of the cost and coverage of
artifact mitigation strategies. With the increasing prevalence of
stealthy malware and corresponding anti-stealth techniques, we

GI’2019, May 2019, Montreal
2019. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Covering array GI algorithm

Cost model Artifacts

Server Cluster

Stealthy
Malware

1©

2©

3©

Figure 1: Proposed workflow for automated malware analy-
sis. Given a cluster of analysis servers, a corpus of stealthy
malware, a cost model of analysis configurations, and a set
of artifacts used to achieve stealthy behavior, we propose
using genetic improvement to find a low-cost (e.g., high ef-
ficiency) set of configurations for each analysis server that
covers all artifacts used by malware in the corpus.

must considerwhich set of artifacts should be mitigated during anal-
ysis. Deciding which mitigation strategy to take during analysis
is not simple as many artifacts exist [9, 13] and are used to evade
detection [10]. While all samples could be defeated with a high-cost
analysis technique, we observe that each sample could individually
be defeated by at least one low-cost (and efficient) analysis tool: we
seek to identify a small, efficient set of covering mitigation strate-
gies. Alternatively, we can control which artifacts to expose to each
sample, and accept that we risk analysis failure for some samples
in exchange for gaining overall analysis throughput. Our insight is
that this problem formulation is related to a theoretical application
of covering array algorithms from the domain of software testing,
where each row in the array represents a test, and each column
represents a software component [5]. By constructing arrays that
denote which artifacts are mitigated as well as a model of the cost
associated with each mitigation, we can use GI to explore the trade-
off space between cost and mitigation coverage. This approach can
allow us to improve the efficiency of automated malware analysis
while retaining analysis fidelity.

2 MOTIVATING EXAMPLE
We seek to lower the cost of the automated analysis of stealthy mal-
ware samples by using GI to explore automated malware analysis
systems configurations. Consider a scenario in which an enter-
prise seeks to analyze a large corpus of stealthy malware samples
with a fixed set of analysis servers. Each server can be configured
to automatically analyze samples using tools with various levels
of performance overhead (cost) and mitigated artifacts (coverage).
Each configuration of each server can be represented using an array

https://doi.org/10.1145/nnnnnnn.nnnnnnn

Table 1: Example of configurations of a 2-server analysis
cluster with 2 artifacts and associated (approximate) costs.

Config Server Screen Debugger Cost

1 1 ✗ ✗ 0
2 ✗ ✗ 0

2 1 ✓ ✓ 2
2 ✓ ✓ 2

3 1 ✓ ✗ 1
2 ✗ ✓ 1

of binary values that correspond to which artifact is mitigated by
which tool.

Table 1 illustrates an example of our proposed approach in which
we configure a 2-server automated analysis cluster over two arti-
facts, screen resolution and debugger presence. First, a stealthy mal-
ware sample could detect an analysis environment that is ’headless’
by measuring screen resolution or monitor connectivity. Second, a
sample could detect the presence of an attached debugger seeking
to trace malware execution. Both artifacts can be mitigated, but for
a cost. In the Table, we show three potential configurations of two
servers. First (row 1), we could mitigate neither artifact on either
server, incurring the lowest cost analysis (i.e., 0), but would not
cover samples using those two artifacts (they would detect the anal-
ysis, avoid malicious behavior, and appear benign). Second (row 2),
we could configure both servers to mitigate both artifacts. Doing
so would cover all samples, but also incurs high cost. Finally (row
3), we could find a balanced configuration in which each server
mitigates one artifact. Collectively, both servers incur lower cost
while retaining coverage of both artifacts.We propose to use genetic
improvement algorithms to explore this tradeoff space. Figure 1
illustrates a proposed workflow incorporating this concept.

3 VARIABLE-STRENGTH COVERING
ARRAYS

A covering array (CA) is an array of integers where each column is
a factor of the system being tested, and the rows represent individ-
ual tests performed on the system [3]. Each CA has an associated
strength, which is the maximum size of any interaction of compo-
nents being tested. For example, if we want to test any combination
of three factors possibly interacting, then the strength is also three.
The CA guarantees that no matter which set of factors are tested,
then all possible ways of setting values to those factors are tested
in some row. However, suppose that this is not always needed, in
that not all combinations of factors need to be tested, or that differ-
ent combinations of different sizes need to be tested. For example,
if we have five factors a,b,c,d,e , we may only need to guarantee
coverage for {a,b}, {b,c,d }, {a,d,e}, {b,c,e}, instead of all three-way
interactions as would be in the general model. This is known as
a variable-strength CA, written VSCA [7]. In contrast to the tradi-
tional use of VSCAs for software testing, we instead construct a
VSCA to mitigate artifacts to increase the efficiency of automated
stealthy malware analysis. Each artifact corresponds to a column
of the VSCA, and each entry in the VSCA is a 0 or 1, to indicate
whether or not the artifact is to be mitigated. The VSCA guarantees
that for any choice of artifacts according to the model, then some

row mitigates against all (or a subset) of them. We have a set of
mitigation strategies, in which each has an associated coverage. For
each row in the VSCA, we seek to find a minimum-cost choice of
mitigation strategies such that the row is covered by the strategy.

We propose to use genetic algorithms both for generation of the
VSCA and for finding the minimum-cost set of mitigation strate-
gies. Genetic algorithms have been used for CAs [8], as well as for
weighted set cover [1], but (1) they have not been used for VSCAs,
and (2) since some mitigation strategies cannot (or should not) be
paired together, we desire to find a conflict-free minimum-cost set
cover. The cost here is thus a more general function that depends
on (1) the individual costs of the tools themselves, (2) the number
of tools chosen, and (3) which tools were chosen. Given such a
function, we propose the use of genetic algorithms to search the
space of mitigation strategies for a low-cost solution.

4 CONCLUSION
Stealthy malware is a growing concern. Lightweight automated
malware analysis techniques must be balanced with heavier-duty
analysis tools to fully analyze and understand larger corpora of
stealthy malware. We suggest a collaboration between the GI and
security communities to investigate approaches to explore tradeoffs
between analysis cost and stealthy malware coverage.

REFERENCES
[1] J. E. Beasley and P. C. Chu. A genetic algorithm for the set covering problem.

European journal of operational research, 94(2):392–404, 1996.
[2] X. Chen, J. Andersen, Z. Mao, M. Bailey, and J. Nazario. Towards an under-

standing of anti-virtualization and anti-debugging behavior in modern malware.
In Proceedings of the 38th Annual IEEE International Conference on Dependable
Systems and Networks (DSN ’08), 2008.

[3] C. J. Colbourn. Combinatorial aspects of covering arrays. Le Matematiche
(Catania), 58(121-167):0–10, 2004.

[4] D. Farmer and W. Venema. Forensic Discover. Addison-Wesley, 2005.
[5] A. Hartman and L. Raskin. Problems and algorithms for covering arrays. Discrete

Mathematics, 284:149–156, 2004.
[6] Kaspersky Lab. Kaspersky Security Bulletin 2017. https://media.kaspersky.com/

jp/pdf/pr/Kaspersky_KSB2017_Statistics-PR-1045.pdf.
[7] S. Raaphorst, L. Moura, and B. Stevens. Variable strength covering arrays. Journal

of Combinatorial Designs, page to appear, 2018.
[8] S. Sabharwal, P. Bansal, and N. Mittal. Construction of t-way covering arrays

using genetic algorithm. International Journal of System Assurance Engineering
and Management, 8(2):264–274, 2017.

[9] C. Spensky, H. Hu, and K. Leach. LO-PHI: Low observable physical host instru-
mentation. In Networks and Distributed Systems Security Symposium 2016 (NDSS
2016), San Diego, CA, February 2016.

[10] S. Stefnisson. Evasive malware now a commodity, 2018.
[11] Symantec. Internet security threat report. https://www.symantec.com/content/

dam/symantec/docs/reports/istr-22-2017-en.pdf, 2017.
[12] L. Zelster. Mastering 4 stages of malware analysis. https://zeltser.com/

mastering-4-stages-of-malware-analysis/, February 2015.
[13] F. Zhang, K. Leach, H. Wang, A. Stavrou, and K. Sun. Using Hardware Features

to Increase Debugging Transparency. In Proceedings of the 36th IEEE Symposium
on Security and Privacy, 2015.

2

https://media.kaspersky.com/jp/pdf/pr/Kaspersky_KSB2017_Statistics-PR-1045.pdf
https://media.kaspersky.com/jp/pdf/pr/Kaspersky_KSB2017_Statistics-PR-1045.pdf
https://www.symantec.com/content/dam/symantec/docs/reports/istr-22-2017-en.pdf
https://www.symantec.com/content/dam/symantec/docs/reports/istr-22-2017-en.pdf
https://zeltser.com/mastering-4-stages-of-malware-analysis/
https://zeltser.com/mastering-4-stages-of-malware-analysis/

	Abstract
	1 Introduction
	2 Motivating Example
	3 Variable-Strength Covering Arrays
	4 Conclusion
	References

